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Abstract. This paper studies the higher-order nonclassical and entanglement properties in the photon-

added trio coherent state (PATCS). We use the criterion of higher-order single-mode antibunching to 

evaluate the role of the photon addition operation. Furthermore, the general criteria for detection of 

higher-order three-mode sum squeezing and entanglement features in the PATCS are also investigated. 

The results show that the photon addition operation to a trio coherent state can enhance the degree of 

both the higher-order single-mode antibunching and the higher-order three-mode sum squeezing and 

enlarge the value of the higher-order three-mode entanglement factor in the photon-added trio coherent 

state. In addition, the manifestation of the single-mode antibunching and the entanglement properties 

are more obvious with increasing the higher values of orders. 

Keywords: Photon-added trio coherent state, higher-order nonclassical properties, antibunching, sum 
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1 Introduction 

The nonclassical and entanglement properties of 

the nonclassical states have been applied to the 

quantum tasks in the quantum optics and quantum 

information, such as using antibunching for the 

generation of the single-photon sources [1], 

squeezing for the detection of the gravitational 

waves in the LIGO interferometer [2], and 

exploiting the entanglement for the 

implementation of protocols in quantum 

teleportation [3] and quantum secret sharing [4]. 

Therefore, the study of nonclassicality and 

entanglement of nonclassical states is an important 

work in the discovery of the quantum optics. It has 

been known that a classical state (e.g., coherent or 

thermal state) is transformed into a nonclassical 

one by adding photons on it [5, 6]. As a further 

development, the addition of photons on two-

mode states was studied and investigated, such as 

the photon-added pair coherent states [7], the 

photon-added displaced squeezed states [8], and 

the photon-added squeezed vacuum state [9]. 

Thanks to the photon addition operation, quantum 

features in these states, for example, the degree of 

the squeezing and the entanglement behaviours 

were enhanced [8, 9]. This is meaningful in the 

processes of quantum information and 

computation, e.g., improving the quantum key 

distribution protocol [10]. Keeping this in mind, we 

study the addition of photon to three-mode states. 

Obviously, the three-mode states play a central 

role in the network tasks of quantum information, 

including controlled teleportation [11] and joint 

remote state preparation [12]. Therefore, 

enhancing the nonclassical and entanglement 

properties of these states will raise the effectiveness 
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of the applications. In the class of three-mode non-

Gaussian states, the trio coherent state (TCS) is an 

important state of the boson field [13]. The TCS is 

given in terms of Fock states as follows: 
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where  = rei with r and  being real, |n, n + p, n + 

p + q = |n|n + p|n + p + q is denoted as the three-

mode Fock state, and Np,q is the normalized factor 

of the TCS given by 
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The TCS is defined as the right eigenstate 

simultaneously of operators ,ˆˆˆ cba ab NN ˆˆ − , and 

bc NN ˆˆ − , corresponding to eigenvalues , p, and q, 

respectively, i.e., satisfying equations 

abcqpcba  ,|ˆˆˆ abcqp = ,| , 

abcqpabcqpab pNN =− ,, ||)ˆˆ( ,  

and abcqpbc NN − ,|)ˆˆ( ,| , abcqpq =   

in which )ˆ( ˆ ,ˆˆˆ xxxxNx
++=  is the bosonic creation 

(annihilation) operator of mode x, x = {a, b, c}. Some 

nonclassical properties of the TCS in both usual 

and higher orders were investigated in [13, 14]. 

Therein, the single-mode squeezing, the two-mode 

squeezing, as well as the three-mode sum 

squeezing do not exist in such a state. Besides, an 

experimental scheme for the generation of the TCS 

has been introduced [15]. Therefore, the addition of 

photons to the TCS may be feasible by using the 

protocol of Zavatta et al. [6].  

Recently, a photon-added trio coherent state 

(PATCS) has been introduced [16]. The PATCS is 

written as follows: 

,|ˆˆˆ,,;| ,,,;,, abcqp
lkh

lkhqpabcqp cbaNlkh = +++   (4) 

where Np,q;h,k,l is the normalized factor; h, k, and l are 

non-negative integers, which are referred to the 

number of photons added. In terms of the Fock 

states, the PATCS is given by 
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with cn;h,k,l being determined as follows: 
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The normalized condition leads to nc2n;h,k,l = 

1, thus 
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It is easy to know that the PATCS is reduced 

to the TCS if h = k = l = 0. In the PATCS, the 

quantum average of operators ccbbaa iiiiii
ccbbaa ˆˆˆˆˆˆ +++

 

is calculated as follows: 
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where ia, ib, and ic are non-negative integers, and X 

= max(0, ia – h, ib – k – p, ic – p – q – l). 

Some usual nonclassical and entanglement 

properties in the PATCS, such as the Wigner 

distribution function, the three-mode sum 

squeezing, and the three-mode entanglement, have 

been studied in detail in [16]. In this paper, we 

focus on the study of the higher-order nonclassical, 



Hue University Journal of Science: Natural Science 
Vol. 129, No. 1B, 49–55, 2020 

pISSN 1859-1388 
eISSN 2615-9678 

 

DOI: 10.26459/hueuni-jns.v129i1B.5685 51 

 

 

as well as entanglement properties in the PATCS. 

We investigate the higher-order single-mode 

antibunching property in Section 2. Section 3 

presents the higher-order three-mode sum 

squeezing behaviours. Section 4 clarifies the 

higher-order entanglement characteristic. Finally, 

we briefly summarize the main results of the paper 

in the conclusions. 

2 Higher-order single-mode 

antibunching 

Antibunching property plays an important role in 

the quantum processes. For example, it was 

exploited to generate the photon-added states via 

the beamsplitters [17]. The criterion for the 

detection of antibunching was first introduced by 

Lee [18], then further extended by others [14]. 

According to An [14], the factor to determine the 

antibunching degree of mode x in higher-order i is 

given by 
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 denotes the quantum average. A certain state 

exists with the higher-order single-mode 

antibunching (HOSMA) when Ax;i < 0; the more 

negative the Ax;i is, the larger the degree of HOSMA 

will be. Let us consider the PATCS, from Eq. (8), 

the factor measuring the degree of HOSMA in 

mode a is given as 
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Similarly, with respect to mode b, we obtain 
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We use the analytical expressions in Eqs. 

(10)–(12) to investigate the property of the HOSMA 

in the PATCS. For mode a, Figure 1 plots the 

dependence of factor Aa;i on r with p = q = 0 for 

several values of h, k, and l, in which the case h = k 

= l = 0 corresponds to the TCS, while others are the 

PATCS. 

There are some prominent points in the property 

of the HOSMA in the PATCS. Firstly, antibunching 

is found in any higher-orders. When i becomes 

bigger, factor Aa;i is more negative. However, the 

degree of HOSMA is reduced by increasing r. 

Secondly, in the small region of r, the photon 

addition operation can enhance the degree of 

HOSMA. On the other hand, the bigger the photon 

number added, the more negative the factor Aa;i 

will become. Nevertheless, in the large area of r, the 

addition of photons reduces the degree of 

HOSMA. Finally, the degree of HOSMA also 

depends on the way of photon-adding. As shown 

in Figure 2, we plot factor Aa;i as a function of r with 

p = q = 0 and i = 3 for fixed h + k + l = 6. It is worth 

noting that the above discussions remain true for 

mode b and c. 

          

 
Fig. 1. Factor Aa;i as function of r with p = q = 0 and in (a) 

i = 1, and in (b) i = 2 for (h,k,l) = (0,0,0) (the solid line), 

(0,1,1) (the dashed curve), (0,2,2) (the dot-dashed 

curve), and (0,3,3) (the dotted curve) 
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Fig. 2. Factor Aa;i as function of r with p = q = 0 and i = 3 

for (h,k,l) = (3,2,1) (the solid line), (2,2,2) (the dashed 

curve), (1,2,3) (the dot-dashed curve), and (0,3,3) (the 

dotted curve) 

3 Higher-order three-mode sum 

squeezing 

Squeezing property was applied in numerous 

quantum tasks [19]. Various criteria for the 

detection of squeezing were introduced and 

investigated, such as sum squeezing, difference 

squeezing, single-mode squeezing, multimode 

squeezing, usual squeezing, and higher-order 

squeezing [8, 14]. In this section, we define a 

generalized criterion for the detection of higher-

order three-mode sum squeezing. Let us consider 

two orthogonal Hermitian operators
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where ja, jb, and jc are non-negative integers. The 

above operators obey the commutative relation 
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Factor SX or SY also manifests the degree of 

higher-order three-mode sum squeezing. The more 

negative these factors are, the higher the squeezing 

degree will become. Note that in case jb = jc = 0 or ja 

= jb = jc, the above criteria correspond to the higher-

order single-mode squeezing or the higher-order 

three-mode sum squeezing (HOTMSS) [14]. 

However, when ja = jb and jc = 0, they become the 

higher-order two-mode sum squeezing criteria [8]. 

In the PATCS, the inequalities in Eq. (16) are 

written as 
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In the PATCS, because 
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and the value of the quantum mean of operators 

cbacba jjjjjj
cbacba ˆˆˆˆˆˆ +++  is non-negative. Therefore, 

in this case, the PATCS does not exist with 

HOTMSS in both X̂  and .Ŷ  However, if ja = jb = 

jc = j > 0, from the analytical expression in Eq. (8), 

the factors of the HOTMSS in the PATCS are given 

by 
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where i1 and i2 are non-negative integers. In our 

numerical computation, factor SY;j is always non-

negative. For example, with fixed p = q = 0, r = 4, h 

= k = l = 1, we get SY;j  0.356 (0.092, 0.011) as j = 1 (2, 

3). Thus, the PATCS does not exist with the 

HOTMSS in .Ŷ  Therefore, we expect that it will 

be revealed in .X̂  We use the analytic expression 

in Eq. (19) to clarify the property of the HOTMSS 

in the PATCS (Figure 3). It is shown that the 

PATCS exists with the HOTMSS in any orders. In 

addition, the negativity of SX;j  becomes more 

obvious when order j decreases or/and parameter 

r increases. It is not difficult to see that the 

HOTMSS disappears in the small region of r. The 

numerical investigation indicates that the larger 

the photon-added number is, the higher the degree 

of HOTMSS will become. For example, when p = q 

= 0, r = 8 and j = 2, the degree of HOTMSS 

approaches 7, 11, 12, and 13% corresponding to h = 

k = l = 1, 2, 3, and 4, respectively. 

Note that if h + k + l is fixed, the degree of 

HOTMSS is the highest when h = k = l. For example, 

when h + k + l = 6, p = q = 0, r = 8 and j = 2, the degree 

of HOTMSS approaches 11, 10, and 9% 

corresponding to (h, k, l) = (2, 2, 2), (4, 1, 1), and (6, 

0, 0), respectively. 

 
Fig. 3. Factor SX;j as a function of r with p = q = 0, h = k = l 

= 2 for j = 2 (the solid line), j = 3 (the dashed curve), and 

j = 4 (the dot-dashed curve) 

 

4 Higher-order three-mode 

entanglement 

Quantum entanglement plays a crucial role in the 

quantum information process. Recently, this 

property has been studied for quantum tasks such 

as quantum teleportation, quantum cryptography, 

quantum dense code, and quantum error 

correction [20]. Quantum entanglement only exists 

in multimode states and is detected by some 

criteria, for example, the Hillery–Zubairy criterion 

[21], the Shchukin–Vogel criterion [22]. In addition, 

there are several criteria for the detection of the 

entanglement degree, such as the von Neumann 

entropy [23], the linear entropy [24], and the 

concurrence [25]. In the three-mode case, the Duc 

et al. criterion [26] in the form of the inequality is 

given as 
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We define the factor of  higher-order three-

mode entanglement (HOTME) as follows: 
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A three-mode state is entangled in a higher-

order if E < 0. Let us consider in the PATCS, if ma  

mb  mc, the quantum mean of operators cba mmm
cba ˆˆˆ  

in this state is zero, thus the PATCS does not 

appear in the HOTME (obeying the above 

criterion). However, when ma = mb = mc = m, from 
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the analytical expression in Eq. (8), the factor of 

HOTME is given by 
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We use the analytical expression in Eq. (24) 

to evaluate the property of the HOTME in the 

PATCS. In Figure 4, we plot Em as a function of r 

when p = q = 0, h = k = l = 2 for several values of m. 

The behaviour of the HOTME in the PATCS can be 

interpreted as follows: The higher value of r or/and 

m is/are, the more obvious the manifestation of the 

HOTME becomes. In addition, although the values 

of Em decrease when increasing the number of 

photons added, the inequality in Eq. (22) is more 

violated. For example, when m = 2, p = q = 0, r = 5, 

the value of Em achieves –0.79 (–0.46), 

corresponding to h = k = l = 0 (h = k = l = 1), but 

2/1)()()( )ˆˆˆ(    m
c

m
b

m
a NNN – |ˆˆˆ|  mmm cba  approaches –

13.7 (–22.2). That means that the HOTME in the 

PATCS becomes more obvious when the number 

of photons added increases. On the other hand, if h 

+ k + l is fixed, Em is minimal when h = k = l. For 

example, when h + k + l = 6, p = q = 0, r = 5, and m = 

2, the values of Em approach –0.43, –0.27, and –0.21 

corresponding to (h, k, l) = (6, 0, 0), (4, 1, 1), and (2, 

2, 2), respectively. 

 

Fig. 4. Em as a fuction of r when p = q = 0 and h = k = l = 

2 for m = 1 (the solid line), m = 2 (the dashed curve), and 

m = 3 (the dot-dashed curve) 

 

 

 

5 Conclusions 

In this paper, we investigated the higher-order 

nonclassical and entanglement properties in the 

PATCS, including the higher-order single-mode 

antibunching, the higher-order three-mode sum 

squeezing, and the higher-order three-mode 

entanglement. If the order is fixed, the role of 

photon addition operation in the PATCS is clearly 

exposed, in which the degree of the HOSMA 

increases, and the HOTMSS is improved by 

increasing the number of photons added to the 

TCS. Moreover, when the number of photons 

added to the TCS increases, the HOTME in the 

PATCS becomes more obvious. Therefore, the 

higher-order nonclassical and entanglement 

properties in the PATCS can be enhanced by local 

photon addition to the TCS. In addition, in the case 

of fixing the total of local photons added to the 

TCS, i.e., h + k + l = constant, it is shown that when 

h = k = l, while HOTMSS is the most enhanced, and 

the HOSMA and the HOTME are least 

strengthened. If the order is changed, the degree of 

the HOSMA increases, and the HOTME is 

improved by increasing the values of the order. 

However, it is vice versa in the HOTMSS 

behaviour, i.e., the HOTMSS reduces when the 

values of the order increase.  
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