Photoelectrochemical characterizations of hybrid nanostructure of few-layer ZnO/MoS2 nanorod
PDF (Vietnamese)

How to Cite

1.
Hiền BTT, Chi TTK, Thành NT, Tân MM, Đại NT, Hùng NM, Lâm T Đại, Bích VT. Photoelectrochemical characterizations of hybrid nanostructure of few-layer ZnO/MoS2 nanorod. hueuni-jns [Internet]. 2020Jun.30 [cited 2024Apr.23];129(1C):15-22. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/5710

Abstract

In this work, we report the photoelectrochemical (PEC) characteristics of the few-layer MoS2 deposited on ZnO nanorod (ZnO/MoS2), synthesized with the hydrothermal and the metal-organic chemical vapor deposition method. This hybrid structure enhances the photoexcited electron–hole pair separation and the rapid transfer of charge carriers in photoelectrical cells via the built-in potential appearing on the interlayer between ZnO and MoS2. The PEC cell of ZnO/MoSphotoelectrode exhibits a current density of 1.15 mA·cm–2 and an efficiency of 0.61% at a potential of 0.2 V, which is 6.3 times higher compared with the photoelectrode manufactured from ZnO nanorods. From these results, we propose a potential application of MoS2 hybrid photocatalyst materials, such as metal oxides and Si, for enhancing the efficiency of PEC devices.

https://doi.org/10.26459/hueuni-jns.v129i1C.5710
PDF (Vietnamese)

References

  1. Ding Q, Song B, Xu P, Jin S. Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds. Chem. 2016;1(5):699-726.
  2. Han B, Hu YH. MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci Eng. 2016;4(5):285-304.
  3. Chen B, Meng Y, Sha J, Zhong C, Hu W, Zhao N. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale. 2018;10(1):34-68.
  4. Xiaoli Z. A review: the method for synthesis MoS2 monolayer. Int J Nanomanufact. 2014; 10(5-6):489-499.
  5. Li H, Dong W, Zhang J, Xi J, Du G, Ji Z. MoS2 nanosheet/ZnO nanowire hybrid nanostructures for photoelectrochemical water splitting. J Am Ceram Soc. 2018; 101(9):3989-3996.
  6. Trung TN, Seo DB, Quang ND, Kim DJ, Kim ET. Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochim Acta. 2018;260:150-156.
  7. Ji S, Yang Z, Zhang C, Liu Z, Tjiu WW, Phang IY, et al. Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution. Electrochim Acta. 2013;109:269-275.
  8. Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010;105(13):136805.
  9. Park JW, So HS, Kim S, Choi SH, Lee H, Lee J, et al. Optical properties of large-area ultrathin MoS2 films: Evolution from a single layer to multilayers. J Appl Phys. 2014;116(18):183509.
  10. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, et al. Two-dimensional atomic crystals. Proc Nat Aca Sci USA. 2005;102(30):10451-10453.
  11. Endler I, Leonhardt A, König U, van den Berg H, Pitschke W, Sottke V. Chemical vapour deposition of MoS2 coatings using the precursors MoCl5 and H2S. Surf. Coat Technol. 1999;120-121:482-488.
  12. Compagnini G, Sinatra MG, Messina GC, Patanè G, Scalese S, Puglisi O. Monitoring the formation of inorganic fullerene-like MoS2 nanostructures by laser ablation in liquid environments. Appl Surf Sci. 2012;258(15):5672-5676.
  13. Li WJ, Shi EW, Ko JM, Chen ZZ, Ogino H, Fukuda T. Hydrothermal synthesis of MoS2 nanowires. J Cryst Growth. 2003;250(3):418-422.
  14. Feng X, Tang Q, Zhou J, Fang J, Ding P, Sun L, Shi L. Novel mixed-solvothermal synthesis of MoS2 nanosheets with controllable morphologies. Cryst Res Technol. 2013;48(6):363-368.
  15. Tian N, Li Z, Xu D, Li Y, Peng W, Zhang G, et al. Utilization of MoS2 Nanosheets To Enhance the Photocatalytic Activity of ZnO for the Aerobic Oxidation of Benzyl Halides under Visible Light. Ind Eng Chem Res. 2016;55(32):8726-8732.
  16. He L, Li L, Wang T, Gao H, Li G, Wu X, et al. Fabrication of Au/ZnO nanoparticles derived from ZIF-8 with visible light photocatalytic hydrogen production and degradation dye activities. Dalton Trans. 2014;43(45):16981-16985.
  17. Tian-you P, Hong-jin L, Peng Z, Xiao-hu Z. Preparation of ZnO Nanoparticles and Photocatalytic H2 Production Activity from Different Sacrificial Reagent Solutions. Chin J Chem Phys. 2011;24(4):464.
  18. Liang P, Tai B, Shu H, Shen T, Dong Q. Doping properties of MoS2/ZnO (0001) heterojunction ruled by interfacial micro-structure: From first principles. Solid State Commun. 2015;204:67-71.
  19. Benavente E, Durán F, Sotomayor-Torres C, González G. Heterostructured layered hybrid ZnO/MoS2 nanosheets with enhanced visible light photocatalytic activity. J Phys Chem Solids. 2018;113:119-124.
  20. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, et al. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays. Angew Chem Int Ed. 2003;115(26):3139-3142.
  21. Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, et al. General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds. Nano Lett. 2005;5(7):1231-1236.
  22. Seo DB, Kim SH, Trung TN, Kim DJ, Kim ET. Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. J Alloys Compd. 2019;770:686-691.
  23. He H, Lin J, Fu W, Wang X, Wang H, Zeng Q, et al. MoS2/TiO2 Edge-On Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Adv. Energy. Mater. 2016;6(14):1600464.
  24. Feng G, Wei A, Zhao Y, Liu J. Synthesis of flower-like MoS2 nanosheets microspheres by hydrothermal method. J Mater Sci Mater Electron. 2015;26(10):8160-8166.
  25. Musa I, Qamhieh N, Mahmoud ST. Synthesis and length dependent photoluminescence property of zinc oxide nanorods. Results Phys. 2017;7:3552-3556
  26. Nguyen TD, Man MT, Nguyen MH, Seo DB, Kim ET. Effect of few-layer MoS2 flakes deposited ZnO/FTO nanorods on photoelectrochemical characteristic. Mater Res Express. 2019;6(8):085070.
  27. Kim YC, Nguyen VT, Lee S, Park JY, Ahn YH. Evaluation of Transport Parameters in MoS2/Graphene Junction Devices Fabricated by Chemical Vapor Deposition. ACS Appl Mater Interfaces. 2018;10(6):5771-5778.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 Array