Coupling of longitudinal optical phonon-plasmon in InGaN semiconductor layers
PDF (Vietnamese)

How to Cite

1.
Phước D Đình, Thảo Đinh N. Coupling of longitudinal optical phonon-plasmon in InGaN semiconductor layers. hueuni-jns [Internet]. 2021Mar.10 [cited 2024Apr.20];130(1A):13-21. Available from: http://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/5964

Abstract

The existence of longitudinal optical (LO) phonon-plasmon coupled modes in InGaN semiconductor layers is investigated by using the dielectric function theory. By using a p-polarized infrared wave irradiating obliquely on thin semiconductor layers, we observe the appearance of four distinct minima in the transmission spectrum of the material. The first two minima are given to the transverse optical phonon modes of the two InN and GaN component semiconductors, while the remaining two minima are attributed to the LO phonon-plasmon coupled modes. Besides, for the first time we have derived an equation for numerically calculating the frequencies of these coupled modes. Besides, the effect of electron density on LO phonon-plasmon coupled modes is also examined in detail.

https://doi.org/10.26459/hueunijns.v130i1A.5964
PDF (Vietnamese)

References

  1. Cuscó R, Amador ND, Hung PY, Loh WY, Droopad R, Artús L. Raman scattering study of LO phonon-plasmon coupled modes in p-type InGaAs. Journal of Alloys and Compounds. 2015;634:87-93. DOI: https://doi.org/10.1016/j.jallcom.2015.01.225
  2. Reichel KS, Smith NL, Joshipura ID, Ma J, Shrestha R, Mendis R, et al. Electrically reconfigurable terahertz signal processing devices using liquid metal components. Nature Communications. 2018;9(1). DOI: https://doi.org/10.1038/s41467-018-06463-z
  3. Hasan M, Arezoomandan S, Condori H, Rodriguez BS. Graphene terahertz devices for communications applications. Nano Communication Networks. 2016;10:68-78. DOI: https://doi.org/10.1016/j.nancom.2016.07.011
  4. Ibáñez J, Tarhan E, Ramdas AK, Hernández S, Cuscó R, Artús L, et al. Direct observation of LO phonon-plasmon coupled modes in the infrared transmission spectra of n-GaAs and n-InxGa1-xAs epilayers. Physical Review B. 2004;69(7). DOI: https://doi.org/10.1103/physrevb.69.075314
  5. Takeuchi H, Nishimura T, Nakayama M. Terahertz electromagnetic waves radiated from coherent longitudinal optical (LO) phonons and LO-phonon plasmon coupled modes in (001)-, (110)-, and (111)-oriented semi-insulating GaAs single crystals. Semiconductor Science and Technology. 2020;35(6):065007. DOI: https://doi.org/10.1088/1361-6641/ab7d4a
  6. Takeuchi H, Tsuruta S, Nakayama M. Terahertz spectroscopy of dynamics of coupling between the coherent longitudinal optical phonon and plasmon in the surge current of instantaneously photogenerated carriers flowing through the i-GaAs layer of an i-GaAs/n-GaAs epitaxial structure. Journal of Applied Physics. 2011;110(1):013515. DOI: https://doi.org/10.1063/1.3603046
  7. Sciacca MD, Mayur AJ, Oh E, Ramdas AK, Rodriguez S, Furdyna JK, et al. Infrared observation of transverse and longitudinal polar optical modes of semiconductor films: Normal and oblique incidence. Physical Review B. 1995;51(12):7744-7752. DOI: https://doi.org/10.1103/physrevb.51.7744
  8. Thao DN, The NP. Effect of Longitudinal Optical Phonon-Plasmon Coupling on the Transient Self-Consistent Field in GaAs p-i-n Diodes. Journal of the Physical Society of Japan. 2013;82(10):104701. DOI: https://doi.org/10.7566/jpsj.82.104701
  9. Thao DN. A study of the coupling between LO phonons and plasmons in InP p-i-n diodes. Superlattices and Microstructures. 2017;103:213-220. DOI: https://doi.org/10.1016/j.spmi.2017.01.029
  10. Koch H, Bertram F, Pietzonka I, Ahl JP, Strassburg M, August O, et al. InGaN: Direct correlation of nanoscopic morphology features with optical and structural properties. Applied Physics Letters. 2014;105(7):072108. DOI: https://doi.org/10.1063/1.4893663
  11. Kucukgok B, Wu X, Wang X, Liu Z, Ferguson IT, Lu N. The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior. AIP Advances. 2016;6(2):025305. DOI: https://doi.org/10.1063/1.4941934
  12. Zhang ZH, Tan ST, Kyaw Z, Ji Y, Liu W, Ju Z, Hasanov N, Sun XW, Demir HV. InGaN/GaN light-emitting diode with a polarization tunnel junction. Applied Physics Letters. 2013;102(19):193508. DOI: https://doi.org/10.1063/1.4806978
  13. Baek SH, Lee HJ, Lee SN. High-performance fat-type InGaN based light-emitting diodes with local breakdown conductive channel. Scientific Reports. 2019;9(1). DOI: https://doi.org/10.1038/s41598-019-49727-4
  14. Giehler M, JaHne E. Effect of Damping on the Plasmon-Phonon Coupling in CdS and GaP. Phys. Shysica status solidi (b). 1976;73(2):503-516. DOI: https://doi.org/10.1002/pssb.2220730217
  15. Davydov VY, Emtsev VV, Goncharuk IN, Smirnov AN, Petrikov VD, Mamutin VV, et al. Experimental and theoretical studies of phonons in hexagonal InN. Applied Physics Letters. 1999;75(21):3297-3299. DOI: https://doi.org/10.1063/1.125330
  16. Karch K, Wagner JM, Bechstedt F. Ab initio study of structural, dielectric, and dynamical properties of GaN. Physical Review B. 1998;57(12):7043-7049. DOI: https://doi.org/10.1103/physrevb.57.7043
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array