Isolation, selection and identification of phosphorus-solubilizing and nitrogen-fixing endophytic bacteria in Ming aralia (Polyscias fruticosa L. Harms)

Keywords

đạm
đinh lăng
lân
Polyscias fruticosa L.
vi khuẩn nội sinh endophytic bacteria
ming aralia
nitrogen
phosphorus
Polyscias fruticosa L. Harms

Abstract

This study aimed to determine phosphorus-solubilizing and nitrogen-fixing endophytic bacteria from Ming aralia. Thirteen leaf and 11 root samples collected in Tri Ton district, An Giang province, were used for isolating endophytic bacteria on the LGI medium. Thirty-five strains were isolated from Ming aralia. All isolates are resistant to pH 5.0. Two strains have the highest phosphorus-solubilizing activity at 29.5 and 29.7 mg/L. Two others have the highest nitrogen-fixing ability and IAA synthesis at 23.0 and 6.87 mg/L. One of the strains solubilizing phosphorus and one fixing nitrogen were identified as Bacillus cereus and B. circulans by 16S rDNA sequences with complete similarity to Bacillus cereus S5 (KU927490.1) and B. circulans H170 (MH671645.1) in Genbank.

https://doi.org/10.26459/hueunijard.v131i3B.6540

References

  1. Thu N. M., Son H. L. (2019), Effect of storage temperature and preservatives on the stability and quality of Polyscias fruticosa (L.) Harms herbal health drinks, Journal of Pharmaceutical Research International, 1–7.
  2. Nguyen M. P. (2020), Impact of roasting to total phenolic, flavonoid and antioxidant activities in root, bark and leaf of Polyscias fruticosa, Journal of Pharmaceutical Research International, 13–17.
  3. Bindraban P. S., Dimkpa C. O., Pandey R. (2020), Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health, Biology and Fertility of Soils, 56(3), 299–317.
  4. Mardamootoo T., du Preez C. C., Barnard J. H. (2021), Phosphorus management issues for crop production: A review, African Journal of Agricultural Research, 17(7), 939–952.
  5. Varga T., Hixson K. K., Ahkami A. H., Sher A. W., Barnes M. E., Chu R. K., Battu A. K., Nicora C. D., Winkler T. E., Reno L. R., Fakra S. C., Antipova O., Parkinson D. Y., Hall J. R., Doty S. L. (2020), Endophyte-promoted phosphorus solubilization in Populus, Frontiers in Plant Science, 11, 1585.
  6. Otieno N., Lally R. D., Kiwanuka S., Lloyd A., Ryan D., Germaine K. J., Dowling D. N. (2015), Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates, Frontiers in Microbiology, 6, 745.
  7. Ahmed M., Rauf M., Mukhtar Z., Saeed N. A. (2017), Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research, 24(35), 26983–26987.
  8. Yarte M. E., Gismondi M. I., Llorente B. E., Larraburu E. E. (2020), Isolation of endophytic bacteria from the medicinal, forestal and ornamental tree Handroanthus impetiginosus. Environmental Technology, 1–11.
  9. Bunsangiam S., Thongpae N., Limtong S., Srisuk N. (2021), Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth, Scientific Reports, 11(1), 1–13.
  10. Mohite B. (2013), Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth, Journal of Soil Science and Plant Nutrition, 13(3), 638–649.
  11. Ke J., Wang B., Yoshikuni Y. (2021), Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture, Trends in Biotechnology, 39(3), 244–261.
  12. Müller T., Behrendt U. (2021), Exploiting the biocontrol potential of plant-associated pseudomonads–a step towards pesticide-free agriculture?, Biological Control, 104538.
  13. Herrera H., Sanhueza T., Novotná A., Charles T. C., Arriagada C. (2020), Isolation and identification of endophytic bacteria from mycorrhizal tissues of terrestrial orchids from southern Chile, Diversity, 12(2), 55.
  14. Cao Ngọc Điệp, Nguyễn Thị Mộng Huyền (2015), Phân lập và xác định đặc tính vi khuẩn nội sinh trong rễ cây khoai lang (Ipomoea batatas) trồng trên đất phèn ở huyện Hòn Đất, tỉnh Kiên Giang, Tạp chí Khoa học Trường Đại học Cần Thơ, Phần B: Nông nghiệp, Thủy sản và Công nghệ Sinh học, 36, 6–13.
  15. Nguyễn Quốc Khương, Lê Vĩnh Thúc, Nguyễn Thị Thái Lê, Trần Hoàng Em, Lâm Dư Mẩn, Trần Ngọc Hữu, Nguyễn Thị Thanh Xuân, Trần Chí Nhân, Lý Ngọc Thanh Xuân (2019), Phân lập, tuyển chọn vi khuẩn có khả năng cố định đạm, phân giải lân, kích thích sinh trưởng cây trồng từ đất vùng rễ cây bắp lai, Tạp chí Nông nghiệp và Phát triển Nông thôn, 23, 17–23.
  16. Nelson D. W. (1983), Determination of ammonium in KCl extracts of soils by the salicylate method, Communications in Soil Science and Plant Analysis, 14(11), 1051–1062.
  17. Glickman E., Dessaux, Y. (1995), A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria, Applied and Environmental Microbiology, 61, 793–796.
  18. Turner J. T., Backman P. A. (1999), Factors relating to peanut yield increases after seed treatment with Bacillus subtilis, Plant Disease, 75, 347–353.
  19. Hall T. A. (1999), BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
  20. Nguyễn Quốc Khương, Lê Vĩnh Thúc, Lê Thị Mỹ Thu, Lưu Thị Yến Nhi, Võ Văn Ựng, Trần Chí Nhân, Lý Ngọc Thanh Xuân và Nguyễn Thị Thanh Xuân (2020), Phân lập, tuyển chọn vi khuẩn nội sinh rễ cây mía đường có khả năng cố định đạm và tổng hợp Indole Acetic Acid, Tạp chí Nông nghiệp và Phát triển Nông thôn,14, 110–116.
  21. Nguyễn Quốc Khương, Lê Vĩnh Thúc, Lê Thị Mỹ Thu, Lưu Thị Yến Nhi, Võ Văn Ựng, Trần Chí Nhân, Lý Ngọc Thanh Xuân và Nguyễn Thị Thanh Xuân (2020), Tuyển chọn vi khuẩn nội sinh rễ cây mía đường có khả năng hòa tan lân, Tạp chí Nông nghiệp và Phát triển nông thôn, 20, 35–41.
  22. Ahmed W., Jing H., Kaillou L., Qaswar M., Khan M. N., Jin C., Geng S., Qinghai H.,Liu Yiren, Guangrong L., Mei S., Chao L., Dongchu L., Ali S., Normatov Y., Mehmood S., Zhang H. (2019), Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China, PloS one, 14(5), e0216881.
  23. Mahmood M., Tian Y., Ma Q., Ahmed W., Mehmood S., Hui X., Wang Z. (2020), Changes in phosphorus fractions and its availability status in relation to long term P fertilization in Loess Plateau of China, Agronomy, 10(11), 1818.
  24. Khuong, N.Q., Kantachote, D., Onthong, J., and Sukhoom, A. (2017), The potential of acid-resistant purple nonsulfur bacteria isolated from acid sulfate soils for reducing toxicity of Al3+ and Fe2+ using biosorption for agricultural application, Biocatalysis and Agricultural Biotechnology, 12, 329–340.
  25. Khuong, N. Q., Kantachote, D., Nookongbut, P., Onthong, J., Xuan, L. N. T., & Sukhoom, A. (2020), Mechanisms of acid-resistant Rhodopseudomonas palustris strains to ameliorate acidic stress and promote plant growth, Biocatalysis and Agricultural Biotechnology, 101520.
  26. Nguyễn Quốc Khương, Trần Ngọc Hữu, Lê Vĩnh Thúc, Trần Hoàng Em, Hứa Hữu Đức, Lâm Dư Mẩn, Nguyễn Kim Quyên, Trần Chí Nhân, Lý Ngọc Thanh Xuân (2020), Phân lập, tuyển chọn vi khuẩn nội sinh cây bắp lai có khả năng cung cấp dinh dưỡng cho cây trồng, Tạp chí Nông nghiệp và Phát triển nông thôn, Số 3+4, 13–18.
  27. Hassan S. E. D. (2017), Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L, Journal of advanced Research, 8(6), 687–695.
  28. Duhan P., Bansal P., Rani S. (2020), Isolation, identification and characterization of endophytic bacteria from medicinal plant Tinospora cordifolia, South African Journal of Botany, 134, 43–49.
  29. Romero F. M., Marina M., Pieckenstain F. L. (2014), The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing, FEMS Microbiology Letters, 351(2), 187–194.
  30. Venieraki A., Dimou M., Pergalis P., Kefalogianni I., Chatzipavlidis I., Katinakis P. (2011), The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat, Microbial Ecology, 61(2), 277–285.
  31. Wulff E. G., Van Vuurde J. W. L., Hockenhull J. (2003), The ability of the biological control agent Bacillus subtilis, strain BB, to colonise vegetable brassicas endophytically following seed inoculation, Plant and Soil, 255(2), 463–474.
  32. Miller K. I., Qing C., Sze D. M. Y., Roufogalis B. D., Neilan B. A. (2012), Culturable endophytes of medicinal plants and the genetic basis for their bioactivity, Microbial Ecology, 64(2), 431–449.