

A COMPACT IMBEDDING OF RIEMANNIAN SYMMETRIC SPACES

Tran Dao Dong

HU – University of Education, 32 Le Loi St., Hue, Vietnam

Abstract. Let G be a connected real semisimple Lie group with finite center and θ be a Cartan involution of G. Suppose that K is the maximal compact subgroup of Gcorresponding to the Cartan involution θ . The coset space $\mathbf{X} = G/K$ is then a Riemannian symmetric space. In this paper, choosing reduced root by system $\Sigma' = \{ \alpha \in \Sigma \mid 2\alpha \notin \Sigma; \alpha / 2 \notin \Sigma \}$ instead of restricted root system Σ and using the action of the Weyl group, first we construct a compact real analytic manifold X in which the Riemannian symmetric space G/K is realized as an open subset and that G acts analytically on it; then, we consider the real analytic structure of \mathbf{X} induced from the real analytic structure of $A_{\mathbb{R}}$, the compactification of the corresponding vectorial part.

Keywords: symmetric space, Weyl group, Cartan involution, compactification

1 Introduction

Let *G* be a connected real semisimple Lie group with finite center and \mathfrak{g} be the Lie algebra of *G*. Denote the Cartan involution of *G* by θ and *K* the fixed points of θ . Then, *K* is a maximal compact subgroup of *G*, and the coset space $\mathbf{X} = G/K$ becomes a Riemannian symmetric space. We also denote by θ the Cartan involution of \mathfrak{g} , corresponding to the Cartan involution θ of *G*. It follows that $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ is the Cartan decomposition of \mathfrak{g} into eigenspaces of θ , where \mathfrak{k} is the Lie algebra of *K*.

Let \mathfrak{a} be a maximal abelian subspace in \mathfrak{p} and \mathfrak{a}^* be the dual space of \mathfrak{a} . The corresponding analytic subgroup A of \mathfrak{a} in G is, then, called the vectorial part of X. For \mathfrak{a} non zero $\alpha \in \mathfrak{a}^*$, non zero eigenspace

$$\mathfrak{g}_{\alpha} = \{Y \in \mathfrak{g} \mid [H, Y] = \alpha(H)Y, \, \forall H \in \mathfrak{a}\}$$

is called the root space, and the corresponding α 's the restricted root. Then, the set $\Sigma = \{\alpha \in \mathfrak{a}^* | \mathfrak{g}_{\alpha} \neq \{0\}, \alpha \neq 0\}$ defines a root system with the inner product induced by the Killing form \langle , \rangle of \mathfrak{g} . Moreover, Weyl group W of Σ is defined with normalizer $N_{\kappa}(\mathfrak{a})$ of \mathfrak{a} in K modulo the centralizer $M = Z_{\kappa}(\mathfrak{a})$ of \mathfrak{a} in K. It acts naturally on \mathfrak{a} and coincides via this action with the reflection group of the root system Σ .

^{*} Corresponding:trdaodong@yahoo.com

Submitted: 6-6-2018; Revised: 11-6-2018; Accepted: 20-6-2018

Choose a fundamental system $\Delta = \{\alpha_1, ..., \alpha_l\}$ of Σ , where number l, which equals dim \mathfrak{a} , is called the split rank of the symmetric space X and denote the corresponding set of all restricted positive roots in Σ by Σ^+ .

Denote the complexification of \mathfrak{g} by \mathfrak{g}_{c} and G_{c} the corresponding analytic group. Let \mathfrak{a}_{c} be the complexification of \mathfrak{a} and A_{c} be the analytic subgroup of \mathfrak{a}_{c} in G_{c} . For each $a \in A_{c}$ and $\alpha \in \Sigma$, we define $a^{\alpha} = e^{\alpha \log a} \in \mathbb{C}^{*} = \mathbb{C} \setminus \{0\}$ and consider

$$A_{\rm IR} = \{ a \in A_{\rm C} \mid a^{\alpha} \in {\rm IR}, \, \forall \alpha \in \Sigma \}.$$

Let $(\mathbf{C}^*)^{\Sigma}$ be the set of complexes $z = (z_{\beta})_{\beta \in \Sigma}$, where $z_{\beta} \in \mathbf{C}^*$ and \mathbf{CIP}^1 be the 1dimensional complex projective space. Then, we can define

$$\varphi: A_{\mathbf{C}} \to (\mathbf{C}^*)^{\Sigma}, a \mapsto \varphi(a) = (a^{\alpha})_{\alpha \in \Sigma}.$$

In [2], based on the natural embedding of $(\mathbf{C}^*)^{\Sigma}$ into $(\mathbf{CP}^1)^{\Sigma}$, we obtained an embedding of $A_{\mathbb{IR}}$ into a compact real analytic manifold $A_{\mathbb{IR}}$ which is called a compactification of $A_{\mathbb{IR}}$, and then constructed a realization of G/K in a compact real analytic manifold. In [3], we applied the construction for semisimple symmetric spaces, and determined the system of invariant differential operators on the corresponding compactifications [4].

In this paper, by choosing reduced root system $\Sigma' = \{\alpha \in \Sigma \mid 2\alpha \notin \Sigma; \frac{\alpha}{2} \notin \Sigma\}$ instead of Σ

and using the action of the Weyl group, first we construct a compact real analytic manifold **X** in which the Riemannian symmetric space G/K is realized as an open subset and that *G* acts analytically on it; then, we consider the real analytic structure of **X** induced from the real analytic structure of $A_{\rm IR}$.

Our construction is a motivation for the construction of Oshima and Sekiguchi [7] for affine symmetric spaces and it is similar to those in [6], [8], [9] for semisimple symmetric spaces.

2 A compactification of the vectorial part

In this section, we recall some notations and results concerning compactification $A_{\mathbb{R}}$ of vectorial part $A_{\mathbb{R}}$ constructed in [2] and then illustrate the construction via the case of symmetric space $SL(n, \mathbb{R}) / SO(n)$.

Let *G* be a connected real semisimple Lie group with a finite center and \mathfrak{g} be the Lie algebra of *G*. Denote the complexification of \mathfrak{g} by \mathfrak{g}_c and G_c the corresponding analytic group. For simplicity, we assume that *G* is a real form of complex Lie group G_c . Let \mathfrak{a}_c be the complexification of \mathfrak{a} and A_c be the analytic subgroup of \mathfrak{a}_c in G_c . Then, we can consider the

map $\varphi : A_{\mathbb{C}} \to (\mathbb{C}^*)^{\Sigma}$, which is defined with $\varphi(a) = (a^{\alpha})_{\alpha \in \Sigma}, \forall a \in A_{\mathbb{C}}$, where $(\mathbb{C}^*)^{\Sigma}$ is the set of complexes $z = (z_{\beta})_{\beta \in \Sigma}$.

It follows that for every $z = (z_{\alpha})_{\alpha \in \Sigma} \in \varphi(A_{C})$, we have

$$z_{-\alpha} = (z_{\alpha})^{-1}, \,\forall \, \alpha \in \Sigma$$
⁽¹⁾

$$z_{\alpha} = \prod_{\gamma \in \Delta} (z_{\gamma})^{k(\alpha,\gamma)}, \, \forall \alpha \in \Sigma^{+}, \, \alpha = \sum_{\gamma \in \Delta} k(\alpha,\gamma).\gamma.$$
⁽²⁾

Denote the 1-dimensional complex projective space by $\mathbb{C}\mathbb{P}^1$. Then, based on the natural embedding of $(\mathbb{C}^*)^{\Sigma}$ into $(\mathbb{C}\mathbb{P}^1)^{\Sigma}$, we get an embedding map of $A_{\mathbb{C}}$ into $(\mathbb{C}\mathbb{P}^1)^{\Sigma}$ denoted also by φ .

Let $\mathbf{M} = \{z \in (\mathbb{IRIP}^1)^{\Sigma} \mid z_{-\alpha} = z_{\alpha}^{-1}, \forall \alpha \in \Sigma \}$. By definition, we see that \mathbf{M} is compact. Moreover, subset

$$\mathcal{U}_{\Sigma^+} = \{ m = (m_{\alpha}, m_{-\alpha}) \in \mathbf{M} \mid m_{\alpha} \in \mathbf{IR}, m_{-\alpha} \in \mathbf{IR}^* \cup \{\infty\}, \forall \alpha \in \Sigma^+ \}$$

is an open subset in $(\operatorname{IRIP}^1)^{\Sigma^+}$, and we get homeomorphism $\chi_{\Sigma^+} : \mathcal{U}_{\Sigma^+} \to \operatorname{IR}^{\Sigma^+}$ defined by $\chi_{\Sigma^+}(m) = (m_\alpha)_{\alpha \in \Sigma^+}, \forall m \in \mathcal{U}_{\Sigma^+}.$

Recall that *W* acts on **M** by $(w.z)_{\alpha} = z_{w^{-1}\alpha}, \forall \alpha \in \Sigma, w \in W, z \in \mathbf{M}$, we obtain $\mathcal{U}_{w(\Sigma^+)} = w.(\mathcal{U}_{\Sigma^+}), \forall w \in W$. Then, it follows from [2, Lemma 1.2] that pair $(\mathcal{U}_{\Sigma^+}, \chi_{\Sigma^+})$ is a chart on **M** and $\{(\mathcal{U}_{w(\Sigma^+)}, \chi_{w(\Sigma^+)})\}_{w \in W}$ defines an atlas of charts on **M** such that **M** becomes a real analytic submanifold.

Now, for each $a \in A_{\mathbf{C}}$ and $\alpha \in \Sigma$, we define $a^{\alpha} = e^{\alpha \log a} \in \mathbf{C}^* = \mathbf{C} \setminus \{0\}$ and consider subset

$$A_{\rm IR} = \{ a \in A_{\rm C} \mid a^{\alpha} \in {\rm IR}, \, \forall \alpha \in \Sigma \}.$$

By definition, $\varphi(A_{\mathbb{R}})$ is a subset of $(\mathbb{R}\mathbb{IP}^1)^{\Sigma}$. Denote the closure of $\varphi(A_{\mathbb{R}})$ in $(\mathbb{R}\mathbb{IP}^1)^{\Sigma}$ by $A_{\mathbb{R}}$. It follows from (1) and (2) that $A_{\mathbb{R}}$ is a compact subset in **M**.

Let \mathcal{U}_{Δ} be the subset of \mathcal{U}_{s^+} consisting of elements $m = (m_{\alpha}, m_{-\alpha})$ such that

$$m_{\alpha} = \prod_{\gamma \in \Delta} (m_{\gamma})^{k(\alpha,\gamma)}, \, \forall \alpha \in \Sigma^+, \, \alpha = \sum_{\gamma \in \Delta} k(\alpha,\gamma).\gamma$$

Then, \mathcal{U}_{Δ} is an open subset in $A_{\mathbb{IR}}$. It follows that

$$\chi_{\Sigma^{+}}(\mathcal{U}_{\Delta}) = \{ x \in \mathbb{IR}^{\Sigma^{+}} \mid x_{\alpha} = \prod_{\gamma \in \Delta} (x_{\gamma})^{k(\alpha, \gamma)} \}$$

and we get homeomorphism $\chi_{\Delta} : \mathcal{U}_{\Delta} \to \mathbb{R}^{\Delta}$ defined by $\chi_{\Delta}(m) = (m_{\gamma})_{\gamma \in \Delta}$, for all $m \in \mathcal{U}_{\Delta}$. In addition, we can define an atlas of charts on $A_{\mathbb{R}}$ induced from the atlas of charts that is defined on M.

Theorem 2.1 ([2, Theorem 1.4]) $A_{\mathbb{R}}$ is a compact real analytic manifold that is called a compactification of $A_{\mathbb{R}}$. The set of charts $\{(\mathcal{U}_{w(\Delta)}, \chi_{w(\Delta)})\}_{w\in W}$ defines an atlas of charts on $A_{\mathbb{R}}$ so that the manifold $A_{\mathbb{R}}$ is covered by |W|-many charts.

Example 2.2 Consider real semi-simple Lie group $G = SL(n, \mathbb{R})$ and denote $\mathfrak{g} = sl(n, \mathbb{R})$, the corresponding Lie algebra of *G*. Suppose that θ is the Cartan involution defined by $\theta(X) = ({}^{t}X)^{-1}, \forall X \in G$ and K = SO(n) is the maximal compact subgroup in *G* with respect to θ . Then, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is the Cartan decomposition of \mathfrak{g} with respect to θ , where $\mathfrak{k} = so(n)$ is the Lie algebra of *K*. Moreover, we have that $G/K = SL(n, \mathbb{R})/SO(n)$ is a Riemannian symmetric space of non-compact type.

Then, we get a maximal abelian subspace in g defined by

$$\mathfrak{a} = \left\{ \begin{pmatrix} t_1 & 0 & \dots & 0 \\ 0 & t_2 & \dots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \dots & t_n \end{pmatrix} | t_1 + t_2 + \dots + t_n = 0 \right\}.$$

By definition, root system Σ of \mathfrak{a} in \mathfrak{g} is $\Sigma = \{ e_i - e_j | 1 \le i \ne j \le n \}$, and the Weyl group W is isomorphic to S_n , where S_n is the symmetric group of order n. Moreover, the corresponding analytic subgroup in G of \mathfrak{a} is defined by

$$A = \left\{ \begin{pmatrix} a_{1} & 0 & \dots & 0 \\ 0 & a_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n} \end{pmatrix} | a_{1}a_{2}\dots a_{n} = 1, a_{i} > 0 \right\} \simeq (0, \infty)^{n-1}$$

Then, we get

$$A_{\rm IR} = \left\{ \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & a_n \end{pmatrix} | a_1 a_2 \dots a_n = 1 \right\} \simeq ({\rm IR}^*)^{n-1}.$$

By definition, we have

$$\mathbf{M} = \{ z \in (\mathbf{IRIP}^{1})^{\Sigma} \mid z_{-\alpha} = z_{\alpha}^{-1}, \forall \alpha \in \Sigma \}$$
$$= \{ (z_{\gamma}, z_{-\gamma}) \mid z_{\gamma} \in \mathbf{IP}^{1}(\mathbf{IR}), \gamma \in \Sigma^{+} \} \simeq (\mathbf{IRIP}^{1})^{\Sigma^{+}}$$

Moreover, $\mathcal{U}_{\Sigma^+} = \{ m = (m_{\alpha}, m_{-\alpha}) \in \mathbf{M} \mid m_{\alpha} \in \mathbf{R}, \forall \alpha \in \Sigma^+ \} \simeq \mathbf{R}^{\Sigma^+}, \text{ where } |\Sigma^+| = \frac{n(n-1)}{2} \text{ and}$

the corresponding homeomorphism
$$\chi_{\Sigma^+} : \mathcal{U}_{\Sigma^+} \to \mathbb{IR}^{\Sigma^-}$$
 is defined by

$$\chi_{\Sigma^+}(m) = (m_{\alpha})_{\alpha \in \Sigma^+}, \forall m \in \mathcal{U}_{\Sigma^+}.$$

58

It follows that pair $(\mathcal{U}_{\Sigma^+}, \chi_{\Sigma^+})$ is a chart on **M**, and $\{(\mathcal{U}_{W(\Sigma^+)}, \chi_{W(\Sigma^+)})\}_{W \in W}$ defines an atlas of charts on **M** such that compact manifold **M** is covered by *n*!-many charts. By definition, we see that

$$\mathcal{U}_{\Delta} = \{ m \in \mathbf{M} \mid m_{\alpha} = \prod_{\gamma \in \Delta} (m_{\gamma})^{k(\alpha,\gamma)}, \alpha = \sum_{\gamma \in \Delta} k(\alpha,\gamma).\gamma, \forall \alpha \in \Sigma^{+} \}$$
$$\mathcal{\chi}_{\Sigma^{+}}(\mathcal{U}_{\Delta}) = \{ x \in \mathrm{I\!R}^{\Sigma^{+}} \mid x_{\alpha} = \prod_{\gamma \in \Delta} (x_{\gamma})^{k(\alpha,\gamma)} \} \simeq \mathrm{I\!R}^{\Delta} \simeq \mathrm{I\!R}^{n-1}.$$

Then, we get homeomorphism $\chi_{\Delta} : \mathcal{U}_{\Delta} \to \mathbb{IR}^{n-1}$ defined by

$$\chi_{\Delta}(m) = (m_{\gamma})_{\gamma \in \Delta}, \, \forall m \in \mathcal{U}_{\Delta}.$$

Hence, $A_{\mathbb{R}} \simeq \mathbb{R}^{n-1} \cup \{\infty\} \simeq S^{n-1}$ is a compact real analytic manifold and set of charts $\{\mathcal{U}_{w(\Delta)}, \chi_{w(\Delta)}\}_{w\in W}$ defines an atlas of charts on $A_{\mathbb{R}}$ so that manifold $A_{\mathbb{R}}$ is covered by n!-many charts.

3 A realization of Riemannian symmetric spaces

Consider subset $A_{\mathbb{R}} = \{ \tilde{a} \in A_{\mathbb{R}} \mid (\tilde{a})^{\alpha} \in [-1,1], \forall \alpha \in \Sigma \}$ and recall that the Weyl group *W* acts on $A_{\mathbb{R}}$ by $(w.\tilde{a})_{\alpha} = (\tilde{a})_{w^{-1}\alpha}, \forall w \in W, \forall \tilde{a} \in A_{\mathbb{R}}$. Note that $A_{\mathbb{R}}$ acts naturally on $A_{\mathbb{R}}$. Then, by definition, for each $\tilde{a} \in A_{\mathbb{R}}$, there exist $t \in [-1,1]^{\Delta}$ and $a_t \in A_{\mathbb{R}}$ such that $\tilde{a} = a_t \cdot sgn t$ and this decomposition is unique. Here, $sgn t = (sgn t_{\gamma})_{\gamma \in \Delta}$ and for an *s* in \mathbb{R} , we define sgn s = 1 (resp. 0, -1) if s > 0 (resp. s = 0, s < 0).

Now, for each $\tilde{a} \in A_{\mathbb{R}}$, there exists $w \in W$ such that $\tilde{a} \in \mathcal{U}_{w(\Sigma^+)} = w.(\mathcal{U}_{\Sigma^+})$. By choosing a suitable positive system Σ^+ , we obtain $W.A_{\mathbb{R}}^- = A_{\mathbb{R}}$.

Based on this, for each $\tilde{a} \in A_{\mathrm{I\!R}}$, we have unique decomposition $\tilde{a} = \tilde{a}_{fin} \cdot \varepsilon(\tilde{a})$, where $\tilde{a}_{fin} \in A_{\mathrm{I\!R}}$ and $\varepsilon(\tilde{a}) \in A_{\mathrm{I\!R}}$ such that $\varepsilon(\tilde{a})^{\gamma} \in \{-1, 0, +1, \infty\}, \forall \gamma \in \Delta$.

Motivation for the Oshima's definition [5], $\varepsilon(\tilde{a})$ is called an extended signature of roots with respect to element \tilde{a} .

Note that for $\tilde{a} \in A_{\mathbb{R}}$, we obtain $\varepsilon(\tilde{a}) \in \{-1, 0, +1\}^{\Delta}$ and for all $\alpha \in \Sigma$, $\alpha = \sum_{\gamma \in \Delta} k(\alpha, \gamma) \cdot \gamma$, we have

$$\mathcal{E}(\tilde{a})^{\alpha} = \prod_{\gamma \in \Delta} (\mathcal{E}(\tilde{a})^{\gamma})^{|k(\alpha,\gamma)|}$$

It follows that mapping $\mathcal{E}_{\tilde{a}}$ of Σ to { -1,0,+1 } is defined by

$$\varepsilon_{\tilde{a}}: \Sigma \to \{-1, 0, +1\}, \alpha \mapsto \varepsilon(\tilde{a})^{\alpha}$$

5	0
Э	Э

is an extended signature of roots that is defined in [7, Definition 2.1].

Now, we go to define parabolic subalgebras with respect to extended signatures $\varepsilon(\tilde{a})$, for all $\tilde{a} \in A_{\mathbb{R}}$.

First, we consider $\tilde{a} \in A_{\mathbb{R}}^{-}$ and let $\varepsilon = \varepsilon(\tilde{a})$ denote the corresponding extended signature of roots. Put $F_{\varepsilon} = \{ \gamma \in \Delta \mid \varepsilon_{\tilde{a}}(\gamma) = \varepsilon(\tilde{a})^{\gamma} \neq 0 \}$ and $\Sigma_{F_{\varepsilon}} = (\sum_{\gamma \in F_{\varepsilon}} \mathbb{IR}\gamma) \cap \Sigma$. Let $\Sigma_{F_{\varepsilon}}^{+} = \Sigma^{+} \cap \Sigma_{F_{\varepsilon}}$. Then, (see

[8]) following subsets

$$\begin{split} \mathfrak{a}_{\varepsilon} &= \{ H \in \mathfrak{a} \mid \alpha(H) = 0, \text{ for any } \alpha \in F_{\varepsilon} \}, \\ \mathfrak{a}(\varepsilon) &= \{ H \in \mathfrak{a} \mid < H, H' >= 0, \text{ for any } H' \in \mathfrak{a}_{\varepsilon} \}, \\ \mathfrak{n}_{\varepsilon} &= \sum_{\alpha \in \Sigma^{+} - \Sigma_{\varepsilon}^{+}} \mathfrak{g}_{\alpha}, \, \mathfrak{n}_{\varepsilon}^{-} = \theta(\mathfrak{n}_{\varepsilon}), \\ \mathfrak{n}(\varepsilon) &= \sum_{\alpha \in \Sigma_{\varepsilon}^{+}} \mathfrak{g}_{\alpha}, \, \mathfrak{n}^{-}(\varepsilon) = \theta(\mathfrak{n}(\varepsilon)), \\ \mathfrak{m}_{\varepsilon} &= \mathfrak{m} + \mathfrak{n}(\varepsilon) + \mathfrak{n}^{-}(\varepsilon) + \mathfrak{a}(\varepsilon) \end{split}$$

are Lie subalgebras of g.

Let $W_{F_{\varepsilon}}$ be the subgroup of W generated by reflections with respect to γ in F_{ε} and let $A_{\varepsilon}, A(\varepsilon), N_{\varepsilon}, N_{\varepsilon}^{-}, N(\varepsilon), N^{-}(\varepsilon)$ and $(M_{\varepsilon})_{0}$ denote the analytic subgroups of G to $\mathfrak{a}_{\varepsilon}, \mathfrak{a}(\varepsilon), \mathfrak{n}_{\varepsilon}, \mathfrak{n}_{\varepsilon}^{-}, \mathfrak{n}(\varepsilon), \mathfrak{n}^{-}(\varepsilon)$ and $\mathfrak{m}_{\varepsilon}$, respectively.

Then, we can define parabolic subalgebra $\mathfrak{p}_{\varepsilon}$ in \mathfrak{g} , where $\mathfrak{p}_{\varepsilon} = \mathfrak{m}_{\varepsilon} + \mathfrak{a}_{\varepsilon} + \mathfrak{n}_{\varepsilon}$ is its Langlands decomposition. Let P_{ε} denote the parabolic subgroup in G with respect to $\mathfrak{p}_{\varepsilon}$, we see that $P_{\varepsilon} = M_{\varepsilon}A_{\varepsilon}N_{\varepsilon}$ is the corresponding Langlands decomposition of P_{ε} .

Moreover, it follows from [7, Lemma 2.3] that $P(\varepsilon) = (M_{\varepsilon} \cap K)A_{\varepsilon}N_{\varepsilon}$ is a closed subgroup of *G*, where $M_{\varepsilon} = (M_{\varepsilon})_0 M$ and

$$N^{-} \times A(\varepsilon) \times P(\varepsilon) \to G, (n, a, p) \mapsto nap$$

is an analytic diffeomorphism onto an open submanifold of G.

In general, for each $\tilde{\eta} = w.\tilde{a} \in A_{\mathbb{R}}$, where $w \in W$ and $\tilde{a} \in A_{\mathbb{R}}$, we first consider parabolic subgroup $P_{\varepsilon} = M_{\varepsilon}A_{\varepsilon}N_{\varepsilon}$ with respect to $\varepsilon = \varepsilon(\tilde{a})$, the corresponding extended signature of \tilde{a} . Then, we can define parabolic subgroup $P_{\tilde{\eta}} = \underline{w}.P_{\varepsilon}.\underline{w}^{-1}$ based on the action of the Weyl group W on parabolic subgroup P_{ε} . Here, \underline{w} denotes a representative for $w \in W$ in $N_{\kappa}(\mathfrak{a})$ [1].

Now, we put $\Sigma' = \{ \alpha \in \Sigma \mid 2\alpha \notin \Sigma; \frac{\alpha}{2} \notin \Sigma \}$, and denote $\Sigma'_{\varepsilon} = \{ \alpha \in \Sigma' \mid \varepsilon_{\tilde{a}}(\alpha) = 1 \}$ for every extended signature $\varepsilon_{\tilde{a}}$ of roots defined by $\varepsilon(\tilde{a})$. Then, (see [7]) it follows that Σ' and Σ'_{ε}

are reduced root systems. Let W', W'_{ε} and $W'_{F_{\varepsilon}}$ be the subgroups of W generated by the reflections with respect to the roots in $\Sigma', \Sigma'_{\varepsilon}$ and $\Sigma'_{F_{\varepsilon}}$.

Put $A'_{\mathbb{R}} = W'.A_{\mathbb{R}}$ and consider product manifold $G \times A'_{\mathbb{R}}$. Let $x = (g, \tilde{\eta})$ be an element of $G \times A_{\mathbb{R}}$, where $\tilde{\eta} = w.\tilde{a}$, in which $w \in W'$ and $\tilde{a} \in A_{\mathbb{R}}$. Then, we get $\varepsilon_x = \varepsilon(\tilde{a})$, the extended signature of roots with respect to \tilde{a} . For simplicity, we use letters P(x), F_x , Σ_x , Σ'_x , W'_x ,... instead of $P(\varepsilon_x)$, F_{ε_x} , Σ_{ε_x} , Σ'_{ε_x} , $W'_{\varepsilon_{\varepsilon_x}}$,..., respectively.

Let $\{H_1, H_2, ..., H_l\}$ denote the dual basis of $\Delta = \{\alpha_1, ..., \alpha_l\}$, that is, $H_j \in \mathfrak{a}$ and $\alpha_i(H_j) = \delta_{ij}, \forall i, j = 1, 2, ..., l$ and put $a(x) = exp(-\frac{1}{2}\sum_{\gamma \in F_x} \log |t_\gamma| |H_\gamma)$, where $H_\gamma \in \{H_1, H_2, ..., H_l\}$ with respect to γ .

Let $W(x) = \{w \in W_x \mid \Sigma_x \cap w\Sigma^+ = \Sigma_x \cap \Sigma^+\}$. By [7, Lemma 2.5], we see that $W(x) = \{w \in W'_x \mid \Sigma'_x \cap w\Sigma^+ = \Sigma'_x \cap \Sigma^+\}$.

Now, we go to define an equivalent relation for points in $G \times A'_{\mathbb{R}}$.

Definition 3.1 We say that two elements $x = (g, \omega.\tilde{a})$ and $x' = (g', \omega'.\tilde{a})$ of $G \times A'_{\mathbb{R}}$ are equivalent if and only if the following conditions hold

- (i) $w.\varepsilon_x = w'.\varepsilon_{x'}$
- (ii) $w^{-1}w' \in W(x)$
- (ii) $ga(x)P(x)\underline{w} = g'a(x')P(x)\underline{w'}$.

Then, it follows that (see [7]) Definition 3.1 really gives an equivalence relation, which we write $x \sim x'$. Moreover, assume that two points x and x' in $G \times A'_{\mathbb{R}}$ satisfy conditions (i) and (ii), we get that $Ad(\underline{w'}^{-1}\underline{w})(\mathfrak{p}(x)) = \mathfrak{p}(x')$, where $\mathfrak{p}(x)$ and $\mathfrak{p}(x')$ are Lie algebras of Lie groups P(x) and P(x'), respectively. Here, we note that Lie algebra $\mathfrak{p}(x)$ of Lie group P(x) has the following form

$$\mathfrak{p}(x) = \mathfrak{m} + \mathfrak{a}_x + \sum_{\alpha \in \Sigma} \{ X + \mathcal{E}_{\tilde{a}}(\alpha) \theta(X) \mid X \in \mathfrak{g}_{\alpha} \}.$$

Based on this and the relation $\underline{w}M\underline{w}^{-1} = \underline{w}'M\underline{w'}^{-1}$, we have $\underline{w}P(x)\underline{w}^{-1} = \underline{w}'P(x')\underline{w'}^{-1}$. It follows that the condition (iii) is equivalent to

$$ga(x)P(x) = g'a(x')\underline{w'}^{-1}\underline{w}P(x)$$
(3)

in G/P(x).

Then, we see that the action of *G* on $G \times A'_{IR}$ is compatible with the equivalence relation. The quotient space of $G \times A'_{IR}$ by this equivalence relation then becomes a topological space with the quotient topology and denoted by **X**'.

Let $\pi: G \times A'_{\mathbb{IR}} \to \mathbf{X}'$ be the natural projection. Since the action of G on $G \times A'_{\mathbb{IR}}$ is compatible with the equivalence relation, we can define an action of G on \mathbf{X}' by

$$g_1\pi(g,\tilde{a}) = \pi(g_1g,\tilde{a}), \,\forall g, g_1 \in G, \tilde{a} \in A'_{\mathrm{IR}}.$$
(4)

Put $A'_{\mathbb{R},\varepsilon} = \{\tilde{a} \in A'_{\mathbb{R}} \mid \varepsilon(\tilde{a}) = \varepsilon\}$ for each $\varepsilon \in \{-1,0,1\}^{\wedge}$ and $\mathbf{X}_{\varepsilon} = \pi(G \times A'_{\mathbb{R},\varepsilon})$.

Proposition 3.2 The quotient topological space \mathbf{X} has the following properties:

(i) **X** is a compact connected *G*-space and $\mathbf{X} = \bigcup_{\varepsilon \in \{-1,0,1\}^{\Delta}} \mathbf{X}_{\varepsilon}$ gives the orbital decomposition of **X** for the action of *G* on it.

(ii) $\mathbf{X}_{\varepsilon} = \pi(G \times A'_{\mathbb{R},\varepsilon})$ is homeomorphic to $G / P(\varepsilon)$ for each $\varepsilon \in \{-1,0,1\}^{\Delta}$.

Proof. (i) Since $\pi(G \times w.\mathcal{U}_{\Delta})$ is connected for every $w \in W'$, and W' is generated by elements $w_{\beta_1}, ..., w_{\beta_{l'}}$, where $\{\beta_1, ..., \beta_{l'}\}$ is a fundamental system of roots for Σ' , we see that the quotient space **X**' is connected.

Consider compact subset $K \times A'_{\mathbb{R}} = K \times W' \cdot A_{\mathbb{R}} \simeq K \times [-1,1]^{\Delta} \times W'$ of the product manifold $G \times A'_{\mathbb{R}}$. Then, subset $\pi(K \times A_{\mathbb{R}})$ is also compact because it is the image of a compact set under continuous map π .

Let \mathfrak{a}^+ denote the positive chamber corresponding to Σ^+ and put $A^+ = \exp \mathfrak{a}^+$. Let $\overline{A^+} = \{ \exp X \mid X \in \mathfrak{a} \text{ with } \alpha(X) \ge 0 \text{ for all } \alpha \in \Sigma^+ \}$ denote the closure of A^+ , we see that

$$\overline{A^{+}} = \{ \exp(-\frac{1}{2}\sum_{\gamma} (\log t_{\gamma})H_{\gamma}) \mid t_{\gamma} \in (0,1] \}.$$

Fix $\varepsilon \in \{-1,1\}^{\Delta}$ and let $x = (g, \omega.\tilde{a})$ be an arbitrary point in $G \times A'_{\mathbb{R},\varepsilon}$. Then, it follows from Cartan decomposition $G = K\overline{A^+}K$ [8] that there exist $k \in K$ and $h \in \overline{A_x^+}$ such that

$$khP(x) = ga(x)P(x),$$

where $\overline{A_x^+} = \{ \exp X \mid X \in \mathfrak{a} \text{ with } \alpha(X) \ge 0 \text{ for all } \alpha \in \Sigma_x^+ \}.$

Note that \mathfrak{a}_x^+ is a fundamental domain for the action of W_x , so we can apply Lemma 2.5 in [7] to imply that compact set $\pi(K \times A'_{\mathbb{R}})$ contains subset $\pi(G \times A'_{\mathbb{R},\varepsilon})$ for every $\varepsilon \in \{-1,1\}^{\Delta}$.

Moreover, since $G \times A'_{\mathbb{IR},\varepsilon}$ is dense in $G \times A'_{\mathbb{IR}}$ and $K \times A'_{\mathbb{IR}}$ is compact, it follows that $\pi(G \times A'_{\mathbb{IR},\varepsilon})$ is also dense in **X**'. Then, **X**' is also compact.

(ii) Put $\tilde{a} \in A_{\mathbb{R},\varepsilon}$ for each $\varepsilon \in \{-1,0,1\}^{\Delta}$ and define a map $\Psi : G/P(\varepsilon) \to \mathbf{X}_{\varepsilon}$ by $\Psi(gP(\varepsilon)) = \pi(g,\tilde{a}), \forall g \in G$. Then, we we can prove that the map is well defined and becomes an homeomorphism which is equivariant for the action of *G*. This follows the Proposition.

Now, we construct an analytic structure on topological space **X** based on the analytic structure on $A_{\rm IR}$.

Consider the atlas of charts $\{(\mathcal{U}_{w(\Delta)}, \chi_{w(\Delta)})\}_{w\in W}$ on $A_{\mathbb{R}}$ defined in Theorem 2.1, where $\mathcal{U}_{w(\Delta)} = w.\mathcal{U}_{\Delta}$, and $\chi_{w(\Delta)} : \mathcal{U}_{w(\Delta)} \to \mathbb{R}^{w(\Delta)}$ is a homeomorphism defined by

$$\chi_{w(\Delta)}(w.m) = (m_{w^{-1}w})_{\gamma \in \Delta}, \forall m \in \mathcal{U}_{\Delta}, w \in W.$$

For every $g \in G$ and $w \in W'$, we put $\Omega_g^w = \pi(gN^- \times \mathcal{U}_{w(\Delta)})$, in which N^- is the analytic subgroup of G corresponding to $\mathfrak{n}^- = \theta(\mathfrak{n})$, where $\mathfrak{n} = \sum_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha}$ and define $\Phi_g^w : N^- \times \mathrm{IR}^{\Delta} \to \Omega_g^w$ by $\Phi_g^w(n,t) = \pi(gn, w\tilde{a}_t), \forall (n,t) \in N^- \times \mathrm{IR}^{\Delta}.$

Based on homeomorphism $\chi_{w(\Delta)} : \mathcal{U}_{w(\Delta)} \to \mathbb{R}^{w(\Delta)}$ with respect to $w \in W'$, we can define a homeomorphism between $gN^- \times \mathcal{U}_{w(\Delta)}$ and $gN^- \times \{w\} \times \mathbb{R}^{|\Delta|}$ for every $g \in G$. Combine this with the proof of Lemma 2.8 (ii) in [7], we get

Lemma 3.3 For every $g \in G$ and $w \in W'$, Φ_g^w is a homeomorphism of $N^- \times \mathbb{R}^{\Delta}$ onto an open subset $\Omega_g^w = \pi(gN^- \times \mathcal{U}_{w(\Delta)})$ of **X**'.

Now, consider the map $(\Phi_{g'}^{w'})^{-1} \circ (\Phi_g^w) : (\Phi_g^w)^{-1} (\Omega_g^w \cap \Omega_{g'}^{w'}) \to (\Phi_{g'}^{w'})^{-1} (\Omega_g^w \cap \Omega_{g'}^{w'})$ for $g, g' \in G$ and $w, w' \in W'$. By definition, Φ_g^w is bijective and continuous. It follows that $(\Phi_{g'}^{w'})^{-1} \circ (\Phi_g^w)$ is bijective and its inverse is of the same form. Moreover, we have

Lemma 3.4 Let $g, g' \in G$ and $w, w' \in W'$. Then,

$$(\Phi_{g'}^{w'})^{-1} \circ (\Phi_g^w) : (\Phi_g^w)^{-1} (\Omega_g^w \cap \Omega_{g'}^{w'}) \to (\Phi_{g'}^{w'})^{-1} (\Omega_g^w \cap \Omega_{g'}^{w'})$$

defines an analytic diffeomorphism between the open subsets of $N^- \times \mathbb{R}^{\Delta}$.

Proof. We have only to show that $(\Phi_{g'}^{w'})^{-1} \circ (\Phi_{g}^{w})$ is analytic.

Note that based on the homeomorphism between $gN^- \times U_{\Delta}$ and $gN^- \times IR^{|\Delta|}$ for every $g \in G$, we can prove the Lemma under condition w = w' by the same way as the proof of Lemma 7 in [5]. Now, we will prove the Lemma without condition w' = w.

For any $q \in \Omega_g^w \cap \Omega_{g'}^{w'}$, we can choose (n,t) and (n',t') in $N^- \times \mathbb{R}^{\Delta}$ such that $\pi(x) = \pi(x') = q$, where $x = (gn, w.\tilde{a}_t)$ and $x' = (g'n', w'.\tilde{a}_{t'})$. Then, we have

 $gna(x)P(x) = g'n'a(x')\underline{w'}^{-1}\underline{w}P(x)$

by (3). Put $g_1 = gna(x)$, $g_2 = g'n'a(x')$, $g_3 = g_1 w^{-1} w'$ and consider maps

$$(\Phi_{g'}^{w'})^{-1} \circ \Phi_{g_2}^{w'} : (n,t) \mapsto (e,\varepsilon_t), (\Phi_{g_2}^{w'})^{-1} \circ \Phi_{g_3}^{w'} : (e,\varepsilon_t) \mapsto (e,\varepsilon_{t'}),$$

$$(\Phi_{g_1}^{w'})^{-1} \circ \Phi_{g_1}^{w} : (n,t) \mapsto (e, \varepsilon_{t'}) \text{ and } (\Phi_{g_1}^{w})^{-1} \circ \Phi_g^{w} : (e, \varepsilon_{t'}) \mapsto (n',t')$$

where $\varepsilon_t = \varepsilon(\tilde{a}_t)$ and $\varepsilon_{t'} = \varepsilon(\tilde{a}_{t'})$ belong to $\{-1, 0, 1\}^{\Delta}$.

Then, we see that $(\Phi_{e'}^{w'})^{-1} \circ (\Phi_{e}^{w})$ is the composition of the above maps

$$(\Phi_{g'}^{w'})^{-1} \circ (\Phi_{g}^{w}) = ((\Phi_{g'}^{w'})^{-1} \circ \Phi_{g_2}^{w'}) \circ ((\Phi_{g_2}^{w'})^{-1} \circ \Phi_{g_3}^{w'}) \circ ((\Phi_{g_3}^{w'})^{-1} \circ \Phi_{g_1}^{w}) \circ ((\Phi_{g_1}^{w})^{-1} \circ \Phi_{g_1}^{w}).$$

It follows from what we have mentioned at the beginning of the proof, maps $(\Phi_{g_1}^w)^{-1} \circ \Phi_g^w, (\Phi_{g_2}^{w'})^{-1} \circ \Phi_{g_3}^{w'}$ and $(\Phi_{g'}^{w'})^{-1} \circ \Phi_{g_2}^{w'}$ are analytic diffeomorphisms between the open subsets of $N^- \times \mathbb{R}^{\Delta}$.

Moreover, by a similar way as the proof of Lemma 2.8 (iii) in [7], we can show that the map $(\Phi_{g_3}^{w'})^{-1} \circ \Phi_{g_1}^{w}$ is analytic on an open subset of $N^- \times \mathbb{R}^{\wedge}$ containing (e, ε_t) .

Since (n,t) is an arbitrary element in $(\Phi_g^w)^{-1}(\Omega_g^w \cap \Omega_{g'}^{w'})$, we see that $(\Phi_{g'}^{w'})^{-1} \circ (\Phi_g^w)$ is analytic and the set $(\Phi_g^w)^{-1}(\Omega_g^w \cap \Omega_{g'}^{w'})$ is open in $N^- \times \mathbb{R}^{\Delta}$. Because the inverse of the map $(\Phi_{g'}^{w'})^{-1} \circ (\Phi_g^w)$ also has the same property, we have the Lemma.

Lemma 3.3 and Lemma 3.4 assure that we can define an analytic structure on **X**' through maps Φ_g^w so that they define analytic diffeomorphisms onto open subsets Ω_g^w of **X**' and the action of *G* on **X**' is analytic. On the other hand, based on the homeomorphism between $gN^- \times U_{\Delta}$ and $gN^- \times \mathbb{R}^{|\Delta|}$ for every $g \in G$ and by a similar way as the proof of Theorem 2.7 in [7], we can prove that topological space **X**' is Hausdorff. Moreover, for an element $w \in W'$, the unique *G* -orbit which is isomorphic to G/K (resp. G/P) is just $G\pi(e, w.\tilde{a}_{\varepsilon_1})$ (resp. $G\pi(e, w.\tilde{a}_{\varepsilon_0})$). Combining this with Proposition 3.2, we get

Theorem 3.5 *The quotient topological space* **X** *has the following properties:*

(i) **X** is a compact connected real analytic manifold and $\bigcup_{w \in W', g \in G} \Omega_g^w$ is an open covering of **X** such that maps Φ_g^w are real analytic diffeomorphisms.

(ii) The action of G on **X** is analytic and orbit $G\pi(x)$ for point x in **X** is isomorphic to homogeneous space G/P(x). In particular, the number of G -orbits which are isomorphic to G/K (resp. G/P) is just the number of elements in W'.

Let $\operatorname{IR}_{1}^{\Lambda} = \{ t \in \operatorname{IR}^{\Lambda} | t_{\alpha} < 1 \text{ for every } \alpha \in \Sigma \}$. Note that for any elements $g \in G, k \in K, m \in M$ and $w.\tilde{a}_{t} \in A'_{\mathbb{R}}$, we have $(gkm, w.\tilde{a}_{t}) \sim (gk, w.\tilde{a}_{t})$. Then, we can define

 $\Psi_{p}^{w}: K / M \times \mathrm{IR}_{1}^{\Delta} \to \mathbf{X}, (kM, t) \mapsto \pi(gk, w.\tilde{a}_{t}).$

Based on Lemma 2.9 in [7] and Theorem 3.5, we have

Corollary 3.6 $\Psi_g^w: (kM,t) \mapsto \pi(gk, w.\tilde{a}_t)$ is an analytic diffeomorphism of product manifold $K / M \times \mathrm{IR}_1^{\Lambda}$ to \mathbf{X} . Moreover, $\bigcup_{w \in W', g \in G} \mathrm{Im} \Psi_g^w$ is an open covering of \mathbf{X} .

Acknowledgement: The author would like to express his special thanks of gratitude to Hue University's Project DHH 2017-03-99 for the financial support.

References

- 1. A. Borel and Lizhen Ji, *Compactifications of symmetric spaces I*, Lectures for the European School of Group Theory, Luminy, France, 2001.
- Tran Dao Dong and Tran Vui, A realization of Riemannian symmetric spaces in compact manifolds, Proc. of the ICAA 2002, 188–196, Bangkok.
- 3. Tran Dao Dong and Tran Vui, A Compact Imbedding of semi simple symmetric spaces, *East West Journal*, No. 01 (2004), 43–54.
- Tran Dao Dong, Some results on semisimple symmetric paces and invariant differential operators, *Hue University's Journal of Science*, Vol. 116, No. 02 (2016), 11–18.
- 5. T. Oshima, A realization of Riemannian symmetric spaces, J. Math. Soc. Japan, vol 30 (1978), 117–132.
- T. Oshima, A realization of semisimple symmetric spaces and construction of boundry value maps, Advanced Studies in Pure Math., vol 14 (1988), 603–650.
- 7. T. Oshima and J. Sekiguchi, Eigenspaces of invvariant differential operatorson an affine symmetric space, *Invent Math.*, vol 57 (1980), 1–81.
- 8. N. Shimeno, A compact imbbeding of semisimple symmetric spaces, J. Math. Sci. Univ. Tokyo, 3 (1996), 551–569.
- J. Sekiguchi, Eigenspaces of the Laplace-Beltrami operator on a hyperboloid, Nagoya Math. J., vol 79 (1980), 151–185.