Abstract
Characteristics of As2Se3 photonic crystal fibers (PCFs) with a solid-core and small-core diameter are numerically investigated in the long-wavelength range (from 2 to 10 μm). A full modal analysis and optical properties of designed photonic crystal fibers with lattice constant Λ and filling factor d/Λ are presented in terms of chromatic dispersion, effective refractive index, nonlinear coefficients, and confinement loss. The simulation results show that a high nonlinear coefficient of 4410.303 W–1·km–1 and a low confinement loss of 10−20 dB·km–1 can simultaneously be achieved in the proposed PCFs at a 4.5 μm wavelength. Chromatic dispersions are flat. The values of dispersion increase with increasing filling factor d/Λ and decrease with the increase in lattice constant Λ. In particular, some chromatic dispersion curves also cut the zero-dispersion line at two points. The flat dispersion feature, high nonlinearity, and small confinement loss of the proposed photonic crystal fiber structure make it suitable for supercontinuum.
References
- Yeh P, Yariv A, Marom E. Theory of Bragg fiber. Journal of the Optical Society of America. 1978;68(9):1196-5. DOI: https://doi.org/10.1364/JOSA.68.001196
- Knight JC, Birks TA, Russell PSJ, Atkin DM. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters. 1996;21(19):1547-2. DOI: https://doi.org/10.1364/OL.21.001547
- Sinha RK, Varshney SK. Dispersion properties of photonic crystal fibers. Microwave and Optical Technology Letters. 2003;37:129-132. DOI: https://doi.org/10.1002/mop.10845
- Maji PS, Roy Chaudhuri P. Supercontinuum generation in ultra-flat near zero dispersion PCF with selective liquid infiltration. Optik. 2014;125(20):5986-92. DOI: https://doi.org/10.1016/j.ijleo.2014.07.026
- Lin-Ping S, Wei-Ping H, Shui-Sheng J. Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology. 2003;21(7):1644-1651. DOI: https://doi.org/10.1109/JLT.2003.814397
- Ferrando A, Silvestre E, Miret JJ, Andrés P. Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters. 2000;25(11):790-2. DOI: https://doi.org/10.1364/OL.25.000790
- Ferrando A, Silvestre E, Andrés P, Miret JJ, Andrés MV. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express. 2001;9(13):687-97. DOI: https://doi.org/10.1364/OE.9.000687
- Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express. 2003;11(8):843-52. DOI: https://doi.org/10.1364/OE.11.000843
- Poletti F, Finazzi V, Monro TM, Broderick NGR, Tse V, Richardson DJ. Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. Optics Express. 2005;13(10): 3728-36. DOI: https://doi.org/10.1364/OPEX.13.003728
- Huttunen A, Törmä P. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area. Optics Express. 2005;13(2):627-35. DOI: https://doi.org/10.1364/OPEX.13.000627
- Saitoh K, Koshiba M. Single-polarization single-mode photonic crystal fibers. IEEE Photonics Technology Letters. 2003;15(10):1384-6. DOI: https://doi.org/10.1109/LPT.2003.818215
- Kubota H, Kawanishi S, Koyanagi S, Tanaka M, Yamaguchi S. Absolutely single polarization photonic crystal fiber. IEEE Photonics Technology Letters. 2004;16(1):182-4. DOI: https://doi.org/10.1109/LPT.2003.819415
- Dobb H, Kalli K, Webb DJ. Temperature-insensitive long period grating sensors in photonic crystal fibre. Electronics Letters. 2004;40(11):657-8. DOI: https://doi.org/10.1049/el:20040433
- Dong X, Tam HY, Shum P. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters. 2007;90(15):151113. DOI: https://doi.org/10.1063/1.2722058
- Hartung A, Heidt AM, Bartelt H. Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation. Optics Express. 2011;19(8):7742-9. DOI: https://doi.org/10.1364/OE.19.007742
- Xueming L, Xiaoqun Z, Xiufeng T, Junhong N, Jianzhong H, Teck Yoong C, et al. Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber. IEEE Photonics Technology Letters. 2005;17(8):1626-8. DOI: https://doi.org/10.1109/LPT.2005.851024
- Agrawal A, Kejalakshmy N, Chen J, Rahman BMA, Grattan KTV. Golden spiral photonic crystal fiber: polarization and dispersion properties. Optics Letters. 2008;33(22): 2716-8. DOI: https://doi.org/10.1364/OL.33.002716
- Stefaniuk T, Le Van H, Pniewski J, Cao Long V, Ramaniuk A, Grajewski K, et al. Dispersion engineering in soft glass photonic crystal fibers infiltrated with liquids. Event: 16th Conference on Optical Fibers and Their Applications, Lublin and Naleczow, Poland. 2015;9816. DOI: https://doi.org/10.1117/12.2229482
- Xuan KD, Van LC, Long VC, Dinh QH, Van Mai L, Trippenbach M, et al. Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water. Optical and Quantum Electronics. 2017;49:87. DOI: https://doi.org/10.1007/s11082-017-0929-3
- Van Lanh C, Hoang VT, Long VC, Borzycki K, Xuan KD, Quoc VT, et al. Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Physics. 2019;29(7): 075107. DOI: https://doi.org/10.1088/1555-6611/ab2115
- Van Le H, Cao VL, Nguyen HT, Nguyen AM, Buczyński R, Kasztelanic R. Application of ethanol infiltration for ultra-flattened normal dispersion in fused silica photonic crystal fibers. Laser Physics. 2018;28(11):115106. DOI: https://doi.org/10.1088/1555-6611/aad93a
- Fatome J, Fortier C, Nguyen TN, Chartier T, Smektala F, Messaad K, et al. Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers. Journal of Lightwave Technology. 2009;27(11):1707-15. DOI: https://doi.org/10.1109/JLT.2009.2021672
- Vigreux-Bercovici C, Ranieri V, Labadie L, Broquin JE, Kern P, Pradel A. Waveguides based on Te2As3Se5 thick films for spatial interferometry. Journal of Non-Crystalline Solids. 2006;352(23-25):2416-9. DOI: https://doi.org/10.1016/j.jnoncrysol.2006.03.018
- Price JHV, Monro TM, Ebendorff-Heidepriem H, Poletti F, Horak P, Finazzi V, et al. Mid-IR Supercontinuum Generation from Nonsilica Microstructured Optical Fibers. IEEE Journal of Selected Topics in Quantum Electronics. 2007;13(3):738-49. DOI: https://doi.org/10.1109/JSTQE.2007.896648
- Domachuk P, Wolchover NA, Cronin-Golomb M, Wang A, George AK, Cordeiro CMB, et al. Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs. Optics Express. 2008;16(10): 7161-8. DOI: https://doi.org/10.1364/OE.16.007161
- Ta’eed VG, Shokooh-Saremi M, Fu L, Moss DJ, Rochette M, Littler ICM, et al. Integrated all-optical pulse regenerator in chalcogenide waveguides. Optics Letters. 2005;30(21):2900-2. DOI: https://doi.org/10.1364/OL.30.002900
- Pelusi MD, Luan F, Magi E, Lamont MRE, Moss DJ, Eggleton BJ, et al. High bit rate all-optical signal processing in a fiber photonic wire. Optics Express. 2008;16(15):11506-12. DOI: https://doi.org/10.1364/OE.16.011506
- Varshney SK, Saitoh K, Iizawa K, Tsuchida Y, Koshiba M, Sinha RK. Raman amplification characteristics of As2Se3 photonic crystal fibers. Optics Letters. 2008;33(21):2431-3. DOI: https://doi.org/10.1364/OL.33.002431
- Fu LB, Rochette M, Ta’eed VG, Moss DJ, Eggleton BJ. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. Optics Express. 2005;13(19):7637-44. DOI: https://doi.org/10.1364/OPEX.13.007637
- Florea C, Bashkansky M, Dutton Z, Sanghera J, Pureza P, Aggarwal I. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers. Optics Express. 2006;14(25):12063-70. DOI: https://doi.org/10.1364/OE.14.012063
- Dabas B, Sinha RK. Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Optics Communications. 2010;283(7):1331-7. DOI: https://doi.org/10.1016/j.optcom.2009.11.091
- Su H, Zhang Y, Ma K, Zhao Y, Wang J. High-temperature sensor based on suspended-core microstructured optical fiber. Optics Express. 2019;27(15):20156-64. DOI: https://doi.org/10.1364/OE.27.020156
- Rim Cherif , Mourad Zghal. Ultrabroadband, Midinfrared Supercontinuum Generation in Dispersion Engineered As2Se3-Based Chalcogenide Photonic Crystal Fibers. International Journal of Optics. 2013;2013:1-5. DOI: https://doi.org/10.1155/2013/876474
- Li F, He M, Zhang X, Chang M, Wu Z, Liu Z, et al. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding. Optical Materials. 2018;79:137-46. DOI: https://doi.org/10.1016/j.optmat.2018.03.025
- Mohsin KM, Alam MS, Hasan DMN, Hossain MN. Dispersion and nonlinearity properties of a chalcogenide As2Se3 suspended core fiber. Applied Optics. 2011;50(25);E102-E7. DOI: https://doi.org/10.1364/AO.50.00E102
- Lumerical Eigenmode Expansion (EME) Solver, https://www.lumerical.com/tcad products/mode/EME, accessed 29 August (2016).
- Cherif R, Ben Salem A, Zghal M, Besnard P, Chartier T, Brilland L, et al. Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Optical Engineering. 2010;49(9):095002. DOI: https://doi.org/10.1117/1.3488042
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2021 Array