SYNTHESIS AND BIOLOGICAL ACTIVITY EVALUATION OF SOME DERIVATIVES SYNTHESIZED FROM CURCUMIN AND CURCUMIN ANALOG

Duong Quoc Hoan*
Department of Chemistry, Hanoi National University of Education, A4, 136 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam

Abstract

The acetohydrazides A5 containing an isoxazole ring and B5 containing an indazole ring were synthesized from the corresponding acetohydrazide derivatives with acetic anhydride in about 80% yield. Also, two acetohydrazones B6 and B7 were driven from acetohydrazide B4 by condensation reaction. Bioactivity tests showed that only acetohydrazone B7 were active against KB cancer cell line at IC50 $=57$ $\mu \mathrm{g} / \mathrm{L}$.

Keywords: characterization, acetohydrazide, indazole, curcumin, curcumin analog, acetohydrazone

1 Introduction

In our previous work, the modification of curcumin and monocarbonyl curcumin analog with heterocyclic bridges - oxazole or indazole rings and the pharmacophore groups did not give any improvement of bioactivity for these types of derivatives, Figure 1 [1,2].

Pharmacophore
linker
Pharmacophore
$\mathrm{R}=-\mathrm{H}(\mathrm{B} 1) ;-\mathrm{CH}_{2} \mathrm{COEt}(\mathbf{B 2}) ;-\mathrm{CH}_{2} \mathrm{COOH}(\mathrm{B} 3) ;-\mathrm{CONHNH} 2(\mathrm{~B} 4)$
Fig. 1. Modification of curcumin and curcumin analog
Interestingly, according to literature, an acetohydrazone contains a hydrogen bonding domain (HBD); acetyl acetohydrazide contains two hydrogen bonding domains [3] that can

[^0]excess DNA easily giving higher potencies for bioactivities. For example, hydrazone derivatives I, II and III worked as an anticonvulsant, antimicrobial and antimycrobacterial compounds, Figure $2[4,5]$. More examples can be found in review article of Sevim Rollas and Ş. Güniz Küçükgüzel [6].

Anticonvulsant Activity

Antimycobacterial Activity
Fig. 2. Some examples of hydrazones and designed target structures
Based on the literature, therefore, in this work, the target compound structures were designed as shown in the Figure 2. The amide group was kept to work as an HBD and the -NH2 groups were acetylated or condensed with aldehydes to improve bioactivities.

2 Experimental section

2.1 General

Solvents and other chemicals were purchased from Sigma-Aldrich, Merck and used as received, unless indicated. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the Bruker Avance 500 NMR spectrometer in deuterated solvents. Chemical-shift data for each signal was reported in ppm units. IR spectra were recorded on the Mattson 4020 GALAXY Series FT-IR. Mass spectra were obtained from Mass Spectrometry Facility of Vietnam Academy of Science and Technology on LC-MSD-Trap-SL spectrometer.

2.2 Synthesis procedure

General procedure of acetylation [8]: To a solution of acetohydrazide A4 or B4 in DMF was added triethylamine and acetic anhydride. The resulting solution was stirred at room temperature for 1 h . The progress of reaction was monitored with $\mathrm{TLC}(\mathrm{MeOH} / \mathrm{DCM}=1 / 19)$. Then the mixture was diluted with water to form solid. Re-crystallization in DMSO/ water (1/2) gave pure products.

Synthesis of (E)-N'-acetyl-2-(4-((2-acetyl-3-(4-(2-(2-acetylhydrazinyl)-2-oxoethoxy)-3-methoxy phenyl)-3a,4,5,6-tetrahydro-2H-indazol-7(3H)-ylidene)methyl)-2-methoxyphenoxy) acetohydrazide (A5)

Following the general procedure, using (E)-2-(4-(7-(4-(2-hydrazinyl-2-oxoethoxy)-3-methoxybe--nzylidene)-3,3a,4,5,6,7-hexahydro-2H-indazol-3-yl)-2-methoxyphenoxy) acetohydrazide (A4) $(262 \mathrm{mg}, 0.5 \mathrm{mmol}, 524 \mathrm{~g} / \mathrm{mol})$, triethylamine $(0.34 \mathrm{~mL}, 2.5 \mathrm{mmol}, \mathrm{d}=0.7255 \mathrm{~g} / \mathrm{mL}, 101 \mathrm{~g} / \mathrm{mol})$
and acetic anhydride ($0.18 \mathrm{~mL}, 1.75 \mathrm{mmol}, \mathrm{d}=1.08 \mathrm{~g} / \mathrm{mL}, 102 \mathrm{~g} / \mathrm{mol}$) gave compound A5 as a milky powder ($260 \mathrm{mg}, 650 \mathrm{~g} / \mathrm{mol}, 80 \%$). IR (KBr), $v\left(\mathrm{~cm}^{-1}\right): 3433,3241,2930,2855,1733,1654$, 1601, 1513, 1420, 1363, 1220, 1117; ${ }^{1} \mathrm{H}$ NMR (DMSO, 500 MHz$) \delta(\mathrm{ppm}): 9.95(\mathrm{~s}, 1 \mathrm{H}), 9.92(\mathrm{~s}, 1 \mathrm{H})$, $9.87(\mathrm{~s}, 1 \mathrm{H}), 9.86(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz} ; 1 \mathrm{H})$, $6.84(1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz} ; 1 \mathrm{H}) 4.84(\mathrm{~d}, J=9.5 \mathrm{~Hz} ; 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}$, $2 \mathrm{H}), 1.86(\mathrm{~s}, 6 \mathrm{H}), 1.68(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, 125 MHz$) \delta$ (ppm): 169.0, 167.88, 167.87, 166.59, 166.39, 158.20, 149.28, 148.78, 146.99, 146.34, 136.24, 129.68, $129.34,126.75,122.04,117.48,114.76,113.96,113.83,110.87,72.03,67.22,66.88,55.65,56.42,55.59$, 29.03, 28.49, 23.53, 22.05, 20.41, 19.22.

Synthesis of 2,2'-((((1E,1'E)-isoxazole-3,5-diylbis(ethene-2,1-diyl))bis(2-methoxy-4,1-
phenylene))bis(oxy))bis(N^{\prime}-acetylacetohydrazide) (B5)
Following the general procedure, using 2,2'-((((1E,1'E)-isoxazole-3,5-diylbis(ethene-2,1-diyl))bis(2-methoxy-4,1-phenylene))bis(oxy))di(acetohydrazide) (B4) ($276 \mathrm{mg}, 0.5 \mathrm{mmol}, 552$ $\mathrm{g} / \mathrm{mol}$), triethylamine ($0.34 \mathrm{~mL}, 2.5 \mathrm{mmol}, \mathrm{d}=0.7255 \mathrm{~g} / \mathrm{mL}, 101 \mathrm{~g} / \mathrm{mol}$) and acetic anhydride ($0.18 \mathrm{~mL}, \mathrm{~d}=1.08 \mathrm{~g} / \mathrm{mL}, 102 \mathrm{~g} / \mathrm{mol}$) gave compound $\mathbf{B} 5$ as a milky powder $(267 \mathrm{mg}, 593 \mathrm{~g} / \mathrm{mol}$, 90%). IR (KBr), $v\left(\mathrm{~cm}^{-1}\right): 3412,3224,3030,2918,2874,1714,1650,1508,1420,1264,1136,1026 ;{ }^{1} \mathrm{H}$ NMR (DMSO, 500 MHz$) \delta(\mathrm{ppm}): 10(\mathrm{~s}, 1 \mathrm{H}), 9.9(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d} ; J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.4(\mathrm{~d} ; J=18.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d} ; ~ J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d} ; J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d} ; J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{~d} ; J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d} ; J=8.0 \mathrm{~Hz} ; 1 \mathrm{H}), 6.91(\mathrm{~s} ; 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s} ; 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (DMSO, 125 MHz$) \delta(\mathrm{ppm}): 168.2,168.0,168.0,166.4,166.4,162.2,149.3,149.3,148.4$, 148.1, 136.0, 134.3, 129.8, 129.4, 121.1, 120.7, 114.1, 114.0, 114.0, 111.7, 110.1, 98.5, 66.9, 66.7, 55.74, 55.70, 20.4, 20.4. ESI-MS m/z: $594\left[\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{9}\right]^{+}$and $592\left[\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{9}\right]^{-}$.

General procedure of hydrazone derivatives[3]: To a solution of $\mathbf{B 4}(0.5 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ was added aldehydes (0.25 mmol). The resulting mixture was refluxed for 5 h . Then it was diluted with water to form solid. The solid was filtrated and washed with $3 \% \mathrm{HCl}$ solution then washed with ethanol several times to rinse out the unreacted andehydes and B4. Re-crystallization in DMSO/ water ($1 / 2$) gave pure products as powder.

Synthesis of $\left(N^{\prime} E, N^{\prime \prime \prime} E\right)-2,2^{\prime}-\left(\left(\left(\left(1 E, 1^{\prime} E\right)\right.\right.\right.$-isoxazole-3,5-diylbis(ethene-2,1-diyl))bis(2-methoxy-4,1-

Following the general procedure, using $\mathbf{B 4}(254 \mathrm{mg}, 0.5 \mathrm{mmol}, 509 \mathrm{~g} / \mathrm{mol})$ and p-nitro benzaldehyde ($151 \mathrm{mg}, 1 \mathrm{mmol}, 151 \mathrm{~g} / \mathrm{mol}$) gave compound $\mathbf{B 6}$ as a milky powder $(260 \mathrm{mg}, 775 \mathrm{~g} / \mathrm{mol}, 67$ \%). IR (KBr), $v\left(\mathrm{~cm}^{-1}\right): 3440,3320,3107,2930,2845,1693,1596,1518,1345,1264,1145,1019 ;{ }^{1} \mathrm{H}$ NMR (DMSO, 500 MHz$) \delta(\mathrm{ppm}): 11.89(\mathrm{~s}, 2 \mathrm{H}), 8.40(\mathrm{~s}, 0.76 \mathrm{H}), 8.27(\mathrm{~d}, J=9.0,2 \mathrm{H}), 8.11(\mathrm{~s}, 1.4$ H), $7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 1.38 \mathrm{H}), 4.73(\mathrm{~s}, 0.7 \mathrm{H})$, 3.88 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (DMSO, 125 MHz$) \delta(\mathrm{ppm}): 169.2,149.0,148.7,148.4,147.7,145.3,141.4$, $140.2,128.0,127.8,123.9,121.1,120.7,113.0,110.0,109.9,98.2,65.1,55.6,55.6$. ESI-MS m/z: 776 $\left[\mathrm{C}_{39} \mathrm{H}_{34} \mathrm{~N}_{7} \mathrm{O}_{11}\right]^{+}$and $774\left[\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O}_{11}\right]^{-}$.

Synthesis of $\left(N^{\prime} E, N^{\prime \prime \prime} E\right)-2,2^{\prime}-\left(\left(\left(\left(1 E, 1^{\prime} E\right)\right.\right.\right.$-isoxazole-3,5-diylbis(ethene-2,1-diyl))bis(2-methoxy-4,1phenylene))bis(oxy))bis(N^{\prime}-(4-hydroxy-3-methoxy-5-nitrobenzylidene)acetohydrazide) (B7)

Following the general procedure, using B4 ($254 \mathrm{mg}, 0.5 \mathrm{mmol}, 509 \mathrm{~g} / \mathrm{mol}$) and 5-nitrovanillin ($200 \mathrm{mg}, 1 \mathrm{mmol}, 197 \mathrm{~g} / \mathrm{mol}$) gave compound B7 as a milky powder ($303 \mathrm{mg}, 867 \mathrm{~g} / \mathrm{mol}, 70 \%$). IR (KBr), $v\left(\mathrm{~cm}^{-1}\right): 3436,3340,3164,2935,2855,1698,1539,1511,1427,1261,1139,1019 ;{ }^{1} \mathrm{H}$ NMR (DMSO, 500 MHz$) \delta(\mathrm{ppm}): 11.60(\mathrm{~s}, 2 \mathrm{H}), 8.20(\mathrm{~s}, 0.78 \mathrm{H}), 7.94(\mathrm{~s}, 1.12 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}$, $1 \mathrm{H}), 7.37(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1.2 \mathrm{H}), 4.69(\mathrm{~s}, 0.8 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, 125 MHz$) \delta(\mathrm{ppm}): 168.79,168.7,168.2,164.0,163.9,150.5,149.3,149.0,148.9,148.6$, 148.4, 148.1, 146.6, 142.4, 136.8, 136.0, 134.4, 129.8, 128.9, 121.1, 120.7, 117.1, 114.1, 110.2, 109.9, 98.4, 67.4, 65.2, 56.4, 55.6.

2.3 Bioactivity test

Bioactivity tests were followed by the Broth dilution method [7]. A5 and B7 were selected for bacterial test including Gram (+) (Staphylococcus aureus, Bacillus subtilis, Lactobacillus fermentum) and Gram (-) (Salmonella enteric, Escherichia coli, Pseudomonas aeruginosa) and fungal test (Candida albican). B7 was also selected for anticancer test with KB cancer cell line. All tests were screened in the Laboratory of Applied Biochemistry of Vietnam Academy of Science and Technology.

3 Results and discussion

Acetylation of A4 was not only occurred at $-\mathrm{NH}_{2}$ of the hydrazide groups but also at nitrogen of the indazole ring to form A5 with three acetyl amide groups. Meanwhile, the acetylation of acetohydrazide using B4 gave compound B5 with two acetyl amide groups in high yield expectedly, Fig. 3.

Fig. 3. Acetylation of acetohydrazides A4 and B4
Classic method was used to make hydrazones B6 and B7 when acetohydrazide B4 was condensed with some substituted aldehydes. Unfortunately, only substituted aldehydes which contained a nitro group drove the expected products B6 and B7. That might be explained by the
increasing reactivity of these aldehydes bearing strong withdrawing electron groups as nitro group. Many other aldehydes such as p-methoxybenzaldehyde; p-hydroxylbenzaldehyde ... did not give the designed products.

Fig. 4. Synthesis of some hydrazones of acetohydrazides B6 and B7
Structures of A5, B5, B6 and B7 were first determined with IR spectroscopy method. IR spectra of all showed the vibration of N-H bond. Since each compound had at least two N-H bonds therefore, their IR spectra indicated many peaks in range of 3200-3500 cm^{-1}. Comparing with results published in our previous paper [1], the vibration of $>\mathrm{C}=\mathrm{O}\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$ was larger than that of $\mathrm{O}=\mathrm{C}-\mathrm{NH}-\mathrm{NH}_{2}$ group. So $\mathbf{A} 5$ and B 5 showed two vibrations of two types of $>\mathrm{C}=\mathrm{O}$ bonds. For example, IR spectrum of $\mathbf{A} 5$ showed vibrations at $1733 \mathrm{~cm}^{-1}$ and at $1654 \mathrm{~cm}^{-1}$. IR spectra of $\mathbf{B 6}$ and $\mathbf{B 7}$ had one vibration of two $>\mathrm{C}=\mathrm{O}$ groups. The formation of hydrazonyl groups increased wavelength number about $10 \mathrm{~cm}^{-1}$. Other vibrations agreed with the expected structures (see experimental section). A5, B5, B6 and B7 were studied MS spectra, B5 and B6 showed the peaks of pseudo molecular ions, unfortunately, A5 and B7 did not. This method indicated molecular weight of $\mathbf{B} 5$ was $593 \mathrm{~g} / \mathrm{mol}$ and molecular weight of $\mathbf{B 6}$ was $775 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectra of A5 showed all protons on its structure. In comparison to ${ }^{1} \mathrm{H} N \mathrm{NMR}$ spectrum of $\mathbf{A} 4$ whose structure was confirmed with 1D, 2D NMR and MS spectra [1], in this case, assignment of all peaks was expressed in the Figure 3. There were three signals assigned for three methyl groups of three acetyl ones. The peak at $\delta 2.24 \mathrm{ppm}$ indicated the acetyl group on the nitrogen atom in the indazole ring. Next, the signals at $\delta 1.86 \mathrm{ppm}$ belonged to 6 protons of H 14 and H14' since they were far from unsymmetric center-indazole ring. This observation agreed with ${ }^{13} \mathrm{C}$ NMR spectra that showed 6 peaks in high field at $\delta 29.0,28.4,23.5,22.0,20.4,19.2 \mathrm{ppm}$ that included $\mathrm{Cx}, \mathrm{Cx}^{\prime}, \mathrm{Cy}, \mathrm{C} 2^{\prime \prime}, \mathrm{C} 14$ and $\mathrm{C} 14{ }^{\prime}$. It also showed 4 peaks at $\delta 169.0,167.8,166.5$ and 166.3 ppm according to four carbonyl groups C12, C12' C13, C13'and C1'.

Fig. 5. 1H NMR analysis of A5
Similar to A5, ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{B 5}$ indicated the presence of two acetyl groups at δ 1.87 ppm that supported the ${ }^{13} \mathrm{C}$ NMR peak at $\delta 20.4 \mathrm{ppm}$ of methyl group (see experimental section). All indicated the right expected products.

Fig. 6. 1H NMR analysis of B6
${ }^{1} \mathrm{H}$ NMR spectra of compounds B6 and B7 gave lot of peaks than expected due to they had two isomeric forms of E and Z around the $>\mathrm{C}=\mathrm{N}$ bonds with ratio about $1 / 2$. To be simple, label from H 1 to H 19 used instead of accompanying with "prime number" was shown in the Figure $4,{ }^{1} \mathrm{H}$ NMR of compound B6. H13 was at $\delta 8.40 \mathrm{ppm}$ and $\delta 8.11 \mathrm{ppm}$ with total intensity about 2 H . An extra observation of the existence of two isomers was H 11 at $\delta 5.23 \mathrm{ppm}$ and at δ
4.73 ppm . In comparison with our previous work, other protons were assigned as shown in Figure 4. B7 was screened anticancer activity. It was against on KB cancer cell line with $I C_{50}=$ $57.6 \mu \mathrm{~g} / \mathrm{mL}$. However, neither of A5 and B7 showed positive results on bacterial tests.

4 Conclusion

The modification of curcumin and curcumin analog based on heterocyclic linker and pharmacophore groups gave 4 new derivatives A5, B5, B6 and B7. Acetylation gave compound A5 with three acetyl groups and B5 with two acetyl ones. B6 and B7 were a mixture of E and Z isomers. A5 and B7 did not show any activities against on bacteria or fungi, but B7 was against on KB at $\mathrm{IC}_{50}=57.6 \mu \mathrm{~g} / \mathrm{mL}$.

References

1. Duong Quoc Hoan, Nguyen Thi Thanh Xuan, Truong Minh Luong, Tran Thi Trang (2016), Characterization and bioactivity evaluation of two new acetohydrazides synthesized from curcumin and monocarbonyl curcumin analog, J. Sci. HNUE, Chemical and Biological Sci., 61(9), 11-20.
2. Duong Quoc Hoan, Dam Thi Uyen, Pham Thi Yen, Nguyen Hien (2015), Synthesis and structure of some phenoxy acetic acid derivatives from curcumin and monocarbonyl curcumin analogs, Vietnam J. Chem., 53 (6e1,2), 348-353.
3. Gökçe, M., Geciken, A. E., Yıldırım, E., Tosun, A. U., (2008), Synthesis and Anticonvulsant Activity of 5-Chloro-2(3H)-benzoxazolinone-3-acetyl-2-(o/p-substituted benzal) hydrazone Derivatives, Arzneimit-tel-Forschung (Drug Research), 58 (11), 537-542.
4. Küçükgüzel, Ş.G.; Oruç E.E.; Rollas S.; Şahin, F.; Özbek, A. (2002), Synthesis, Characterization and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur. J. Med. Chem., 37, 197-206.
5. Kaymakçıoğlu K.B.; Oruç, E.E.; Unsalan, S.; Kandemirli, F.; Shvets, N.; Rollas, S.; Anatholy, D. (2006), Synthesis and characterization of novel hydrazide-hydrazones and the study of their structureantituberculosis activity. Eur. J. Med. Chem., 41, 1253-1261.
6. Rollas, S. and Küçükgüzel, Ş. G., (2007). Biological Activities of Hydrazone Derivatives Molecules, 12, 1910-1939.
7. Ericsson, J. M.; Sherris, J. C., (1971), Antibiotic sensitivity testing: report of an international collaborative study, Acta Pathol Microbiol Scand, 217, 1-90.
8. Saeed, A., Hussain, M., Qasim, M., (2014) Novel N-acyl/aroyl-2-(5-phenyl-2H-tetrazol-2yl)acetohydrazides: synthesis and characterization, Turkish Journal of Chemistry, 38, 436-442.

[^0]: * Corresponding: hoandq@hnue.edu.vn

