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Abstract. The special functions such asmultiple harmonic sums, polyzetas, or multiple polylogarithms are compatible
with the structure of quasi‑shuffle algebras. We express non‑commutative generating series of these special functions
on the transcendence bases of the algebras and then identify local coordinates to reduce their polynomial relations or
asymptotic expansions indexed by these bases.
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1 Introduction

A harmonic sum for the simple index, s ∈ N+, is de‑
fined by the sum Hs(N) := 1 + 1

2s + . . . + 1
Ns . We

know that the limit lim
N→∞

Hs(N) is also finite when‑
ever s > 1 and one calls this limit the zeta number.
For example

lim
N→∞

H2(N) = lim
N→∞

N∑
n=1

1

n2
=

∞∑
n=1

1

n2
= ζ(2).

These definitions are also extended to a set of multi‑
index called multiple harmonic sums and polyzetas
(or multiple zeta values), respectively. For each com‑
position of positive integers s = (s1, . . . , sr), s1 >
1, r,N ∈ N+,

Hs(N) :=
∑

N≥n1>...>nr>0

1

ns1
1 . . . nsr

r
, (1)

ζ(s) :=
∑

n1>...>nr>0

1

ns1
1 . . . nsr

r
. (2)

Example 1.

H2,1(N) =
∑

N≥n1>n2≥1

1

n2
1n2

=
1

22.1
+

(
1

32.2
+

1

32.1

)

+

(
1

42.3
+

1

42.2
+

1

42.1

)
+ . . .

+

(
1

N2(N − 1)
+

1

N2(N − 2)
+ . . .+

1

N2.1

)

N→∞−→
∑

n1>n2≥1

1

n2
1n2

= ζ(2, 1).

Furthermore, this structure also has an other in‑
finity form, called multiple polylogarithms, such a

function of one variable in the open unit ball of the
complex plan, z ∈ C, |z| < 1,

Lis(z) :=
∑

n1>...>nr>0

zn1

ns1
1 . . . nsr

r
. (3)

They all have famous relations in limits byAbel’s the‑
orem:

lim
N→∞

Hs(N) = lim
z→1

Lis(z) = ζ(s), ∀s1 > 1. (4)

Fortunately, the multiple harmonic sums are com‑
patible with the algebra of the stuffle product;
whereas, themultiple polylogarithms are compatible
with the algebra of the shuffle product when they are
observed in the forms of iterated Chen integrals. As a
consequence of these results, the polyzetas are com‑
patible with both of the structures.

In this paper, we briefly review a general re‑
sult about Hopf algebras (in Section 2), of the quasi‑
shuffle product and the concatenation product, con‑
structed on a space of formal polynomials freely gen‑
erated by some alphabet. They admit transcendence
bases (see [1]) on which the special functions can be
expressed as non‑commutative generating series in
respect of Hausdorff group1:

H(N) =

↘∏
l∈LynY \{y1}

exp(HΣl
(N)Πl),

Z =

↘∏
l∈LynY \{y1}

exp(ζ(Σl)Πl),

L(z) =

↘∏
l∈LynX\X

exp(LiSl
(z)Pl),

Z =

↘∏
l∈LynX\X

exp(ζ(Sl)Pl).

Thanks to relations among the non‑commutative
generating series L(z) z→1−→ Z ,H(N)

N→∞−→ Z in
1Hausdorff group is the group of group‑like elements in a Hopf algebra.

LynX,LynY denote the sets of Lyndon words generated by the alphabets X = {x0, x1}, x0 ≺ x1, and Y = {yk}k≥1, y1 ≻ y2 ≻ . . ..
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the equivalent algebraic structures, we establish rela‑
tions and reduce representations in the forms of poly‑
nomial relations and asymptotic expansions indexed
by the transcendence bases.

2 Quasi‑shuffle algebra with the defor‑
mation q

Let’s denote Y := {yk| k ∈ N+} an alphabet totally
ordered by y1 � y2 � · · · . Aword is a finite sequence
of letters and Y ∗ denotes the set of all words includ‑
ing the emptyword, denoted by 1Y ∗ . This set is a free
monoid2 and 1Y ∗ is a neutral element. We call each
linear combination, over the field Q, of words in Y ∗

a (formal) polynomial and Q〈Y 〉 denotes the set of
all polynomials. This set equipped with the concate‑
nation product follows a free algebra with unit 1Y ∗ .
A Lyndon word is a nonempty word that is smaller
than all its nontrivial proper right factors and LynY
denotes the set of all Lyndon words in Y ∗.

For any q belonging to any field containing the
field of rational number, the q−stuffle product, de‑
noted by q , is defined by recurrent formula as fol‑
lows: ∀yk1

, yk2
∈ Y , ∀u, v ∈ Y ∗

u q1Y ∗ = 1Y ∗ qu = u,

yk1u qyk2v = yk1(u qyk2v) + yk2(yk1u qv)

+ qyk1+k2(u qv).

Example 2.

y2 qy3y1 = y2(1Y ∗ qy3y1) + y3(y2 qy1)

+ qy5(1Y ∗ qy1)

= y2y3y1 + y3y2y1 + y3y1y2

+ q(y3y3 + y5y1).

This product is exactly the shuffle product (denoted
by ) for q = 0 and the stuffle product (denoted by

) for q = 1. This product is commutative and as‑
sociative hence, (A〈Y 〉, q, 1Y ∗) is a commutative,
associative algebra with unit, where A := Q[q] is the
field extension of Q containing q. Here, we still use
the notation q as a morphism

q : A〈Y 〉 ⊗ A〈Y 〉 −→ A〈Y 〉 (5)
u⊗ v �−→ u qv.

We denote ∆
q and ∆conc as the dual laws of

the q−stuffle product and the concatenation product,
respectively; this means that for all w in Y ∗,

∆ q (w) =
∑

u,v∈Y ∗

〈∆ q (w) | u⊗ v〉u⊗ v

=
∑

u,v∈Y ∗

〈w | u qv〉u⊗ v, (6)

∆conc(w) =
∑

u,v∈Y ∗

〈∆conc(w) | u⊗ v〉u⊗ v

=
∑

u,v∈Y ∗

〈w | uv〉u⊗ v. (7)

We proved (in paper [1]) that the coproduct ∆
q

is compatible with the concatenation product. This
means that ∆ q (uv) = ∆ q (u)∆ q (v), whereas
∆conc is compatible with the q‑stuffle product, that
means ∆conc(u qv) = ∆

q
(u) q∆ q

(v). An
important point to note here is theweight of theword
w = ys1 . . . ysr to be (and denoted by) (w) = s1+. . .+
sr. Due to these definitions we can see that∆

q
(w)

is the polynomial of words in weight (w) and u qv
is the polynomial of words in weight (u) + (v). Con‑
sequently, they all form the two algebraic structures
in duality as follows:

Proposition 1 ([1]). (A〈Y 〉, conc, 1Y ∗ ,∆
q
, ε,Sconc

q )
and (A〈Y 〉, q, 1Y ∗ ,∆conc, ε,S q ) are the graded
Hopf algebras in duality.

On the other hand, we proved that the algebraic
morphism defined on letters by

π1(yk) = yk +
∑
i≥2

(−q)i−1

i

∑
s1+...+si=k

ys1 . . . ysi (8)

to be an isomorphism between the two algebraic
algebras H = (A〈Y 〉, conc, 1Y ∗ ,∆ , ε,Sq) and
H q

= (A〈Y 〉, conc, 1Y ∗ ,∆
q
, ε,Sq). Therefore,

each letter is a primitive3 element inH and follows
its image π1(yk) to be primitive in H q . This result
helps us to construct a linear basis for the space of the
Lie algebra generated by primitive elements. We de‑
note here by {Πl}l∈LynY the Poincaré‑Birkhoff Witt
basis (PBW‑basis for short), and it is computed ac‑
cording to the recurrent formula [1]:




Πys
= π1(ys) for ys ∈ Y,

Πl = [Πl1 ,Πl2 ] for l ∈ LynY \ Y,
Πw = Πi1

l1
. . .Πik

lk
for w = li11 . . . likk ,

(9)

where (l1, l2) is the standard factorization of l, w =
li11 . . . likk , l1 > . . . > lk, l1, . . . , lk ∈ LynY ,

Example 3.

Πy1
= y1, Πy2

= y2 − q
2y

2
1 ,

Πy2y1
= y2y1 − y1y2,

Πy3y1y2 = y3y1y2 − y2y3y1 + y2y1y3 − q
2y3y

3
1

− qy2y
2
1y2 − y1y3y2 +

q
2y1y3y

2
1

+ q
2y

2
1y

2
2 −

q2

2 y
2
1y2y

2
1 +

q
2y

2
2y

2
1

+ q
2y

2
1y3y1 −

q
2y

3
1y3 +

q2

4 y
4
1y2 +

q2

4 y2y
4
1 .

On the other hand, we also established a for‑
mula for the dual basis4, denoted by {Σw}w∈Y ∗ , by

2The binary operation here is the concatenation product.
3A polynomial P is primitive for the coproduct∆ if∆ (P ) = P ⊗ 1Y ∗ + 1Y ∗ ⊗ P .
4This pair of bases is dual in meaning that ⟨Σu | Πv⟩ = δu,v for any u, v ∈ Y ∗.

2
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the recurrent formula [1]:




Σyk
= yk,

Σl =
∑
(∗)1

ys1Σl1...ln

+
∑
i≥2

qi−1

i!

∑
(∗)2

ys′1+...+s′i
Σl1...ln ,

Σw =
Σ qi1

l1 q . . . qΣ
qik

lk

i1! . . . ik!
.

(10)

Example 4.

Σy1 = y1, Σy2 = y2, Σy3 = y3,
Σy3y1y2

= y3y1y2 + y3y2y1

+ q(y23 +
1
2y4y2 +

1
2y5y1) +

q2

3 y6.

This basis reduces a transcendence basis, {Σl}l∈LynY ,
of the algebra (A〈Y 〉, q, 1Y ∗). This permits us to
express the diagonal series DY :=

∑
w∈Y ∗

w ⊗w, an el‑

ement in the algebraA〈〈Y 〉〉⊗A〈〈Y 〉〉 of the q‑stuffle
product on the left of the tensor and the concatena‑
tion product on the right.

Proposition 2 ([1]).

DY =
∑

w∈Y ∗

Σw ⊗Πw

=
∑

l1≻...≻lk

Σ qi1
l1 q . . . qΣ

qik
lk

i1! . . . ik!
⊗Πi1

l1
. . .Πik

lk

=

↘∏
l∈LynY

exp(Σl ⊗Πl), (11)

where the last product takes Lyndon words in decreasing
order.

3 Representation of special functions on
transcendence bases

3.1     Representation of multiple polylogarithms

We now consider the above algebra in the case of the
alphabet X = {x0, x1}, totally ordered by x0 ≺ x1,
with the shuffle product (it means q = 0). At that
time, the couple of bases in duality [2] is denoted by
{Pw}w∈X∗ , the PBW‑basis, and {Sw}w∈X∗ , Schützen‑
berger basis. It follows from (11) that5

DX :=
∑

w∈X∗

w ⊗ w =
∑

w∈X∗

Sw ⊗ Pw

=

↘∏
l∈LynX

exp(Sl ⊗ Pl). (12)

We have seen at (3) that a multiple polylog‑
arithms is determined for each multi‑index s =
(s1, . . . , sr). In this section, weuse encoding that each

composition of positive integers s = (s1, . . . , sr) asso‑
ciates with the word w = xs1−1

0 x1 . . . x
sr−1
0 x1. Thus,

the multiple polylogarithms can be rewritten as:

Liw(z) =
∑

n1>...>nr≥1

zn1

ns1
1 . . . nsr

r
, |z| < 1. (13)

Using two differential forms ω0(z) := dz
z and

ω1(z) :=
dz
1−z with the conventions that Li1∗X = 1 and

Lix0
(z) =

∫ z

1
ω0(t) = log(z), one can express themul‑

tiple polylogarithms, thank to Frederich criterion, in
the form of iterated integral [3, 4],

Lix1(z) =

∞∑
n=1

zn

n
=

∫ z

0

ω1(t) = − log(1− z),

Lixiw(z) =

∫ z

0

ωi Liw, for i ∈ {0, 1}. (14)

Following this representation, one proved that the
multiple polylogarithms are compatible with the
shuffle product, namely [2, 5]:

∀u, v ∈ X∗, Liu(z)Liv(z) = Liu v(z). (15)

This permits us to extend Li as a morphism:

Theorem 1 ([3]). Let C := C
[
z, 1

z ,
1

1−z

]
. The map‑

ping w �−→ Liw is the isomorphism of (C〈X〉, , 1X∗)
to (C[{Liw}w∈X∗ ], ·, 1Ω), where Ω := C \ ((−∞, 0) ∪
[1,+∞)).

The non‑commutative generating series ofmul‑
tiple polylogarithms is defined as an image of
the morphism6 on the double series DX though
Li• ⊗idX∗ :

L(z) := Li• ⊗̂idX∗(DX) =
∑

w∈X∗

Liw(z)w

= e− log(1−z)x1

↘∏

l∈(LynX) X

eLiSl
(z)Plelog(z)x0 .

On the other hand, for any Lyndon word l ∈
(LynX) X , one has Sl ∈ x0X

∗x1. Therefore, we can
consider the non‑commutative generating series, de‑
noted by Lreg , as well as its evaluation at z = 1 [3],
we have

Lreg(z) =

↘∏

l∈(LynX) X

eLiSl
(z)Pl ,

z→1−→ Z :=

↘∏

l∈(LynX) X

eζ(Sl)Pl . (16)

Moreover, one studies about the monodromy
of the multiple polylogarithms on close curves by
Chen’s series and the differential equation Drinfield
[3, 6] to state the following proposition:

5Note that, x0, x1 are respectively the smallest and the largest Lyndon words in X∗ and Px0 = Sx0 = x0, Px1 = Sx1 = x1.
6This morphism isn’t continue on the tensor product (Q⟨X⟩, , 1X∗ ) ⊗ (Q⟨X⟩, conc, 1X∗ ) but in the subalgebra IsoQ(X) =

spanQ{u⊗ v | |u| = |v|}.

3
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Proposition 3 ([3]). i) For all curve z0 ⇝ z in Ω,
one has L(z) = Sz0⇝zL(z0).

ii) In the special case of curve 1− t, one has7

L(x0, x1 | 1− t) = L(−x1,−x0 | t)Z . (17)

We now use an automorphism of Q〈X〉 of
the concatenation product, denoted by σ, verified
σ(x0) = −x1, σ(x1) = −x0. Note that, for all words
w ∈ X∗, Pw and Sw are homogeneous polynomial of
weight8 |w|, the length of w. Furthermore, Q〈X〉 is a
graded space admitting two graded bases {Pw}w∈X∗

and {Sw}w∈X∗ . We can see more precise by the fol‑
lowing diagram illustrating a matrix representation
of σ in a subspace of weight n, denoted by Xn :=

span{u(n)
1 , . . . , u

(n)
2n }, where {u(n)

1 , . . . , u
(n)
2n } is the set

of all words of weight (the length in this case) n, E(n)

denotes the matrix representation of σ with respect
to this basis: for all 1 ≤ i, j ≤ 2n,

E
(n)
ij := 〈σ(P

u
(n)
i

) | P
u
(n)
j

〉 = 〈σ(S
u
(n)
j

) | S
u
(n)
i

〉, (18)

(Xn, {Pu
(n)
i

}1≤i≤2n)
σ

E(n)

��

duality

��

(Xn, {Pu
(n)
i

}1≤i≤2n)

duality

��
(Xn, {Su

(n)
i

}1≤i≤2n) ��
σ

tE(n)
(Xn, {Su

(n)
i

}1≤i≤2n).

Proposition 4. Let L(z) be the non‑commutative gener‑
ating series of multiple polylogarithms, we have

σ[L(z)] =
∑

w∈X∗

LiSw
(z)σ(Pw) =

∑
w∈X∗

Liσ(Sw)(z)Pw. (19)

Proof.

∑
w∈X∗

LiSw
(z)σ(Pw) =

∑
n≥0

2n∑
i=1

LiSui
(z)σ(Pui

)

=
∑
n≥0

2n∑
i=1

LiSui
(z)

2n∑
j=1

E
(n)
ij Puj

=
∑
n≥0

2n∑
j=1

2n∑
j=1

E
(n)
ij LiSui

(z)Puj

=
∑
n≥0

2n∑
j=1

Li∑2n

j=1 E
(n)
ij Sui

(z)Puj

=
∑
n≥0

2n∑
j=1

Liσ(Suj
)(z)Puj

=
∑

w∈X∗

Liσ(Sw)(z)Pw.

For this reason, we can rewrite relation (17) as fol‑
lows:

∑
w∈X∗

LiSw
(z)Pw =

∑
w∈X∗

Liσ(Sw)(1− z)PwZ (20)

From this formula, by identifying local coordinates,
we get relations among the multiple polylogarithms
indexed by basis {Sl}l∈LynX . The following example
are computed by our program running underMaple.

Example 5.

LiSx0
(z) = log(z), LiSx1

(z) = − log(1− z),

LiSx0x1
(z) = − log(z) log(1− z)

− LiSx0x1
(1− z) + ζ(Sx0x1),

LiS
x0x2

1

(z) =
1

2
log(1− z)2 log(z)

+ log(1− z)LiSx0x1
(1− z)

− LiS
x2
0x1

(1− z)

+ ζ(Sx2
0x1

) + log(z)ζ(Sx0x1
).

3.2 Representation of multiple harmonic sums

We have seen at (1) that a multiple harmonic sum is
determined for each multi‑index s = (s1, . . . , sr) ∈
N∗

+. Similar to the idea of the previous subsec‑
tion, these compositions of positive integers, s =
(s1, . . . , sr) ∈ Y ∗, are encoded by the words w =
ys1 . . . ysr . Thus, the multiple harmonic sums can be
rewritten as

Hw(N) :=
∑

N≥n1>...>nr≥1

1

ns1
1 . . . nsr

r
. (21)

Note that, for each composition s = (s1, s2, . . . , sr),
we have the reducing expression

Hys
(N) =

N∑
n1=r

H(ys2
,...,ysr )

(n1 − 1)

n1
, (22)

by the reason

Hys
(N) =

∑
N≥n1>...>nr≥1

1

ns1
1 . . . nsr

r

=
N∑

n1=r

1

ns1
1

∑
n1−1≥n2>...>nr≥1

1

ns2
2 . . . nsr

r

=
N∑

n1=r

H(ys2
,...,ysr )

(n1 − 1)

ns1
1

.

This allows us to prove, by induction, that multiple
harmonic sums are compatible with the stuffle prod‑
uct [7]. It means that for all words w1, w2 ∈ Y ∗, we
have

Hw1
(N)Hw2

(N) = Hw1 w2
(N). (23)

Proposition 5. The mapping w �−→ Hw is the isomor‑
phism between (Q〈Y 〉, , 1Y ∗) and the algebra of multi‑
ple harmonic sums with the standard product, denoted by
(HR, ·, 1).

7Here, we understand L(z) as L(x0, x1|z).
8|w| denotes the length of the word w.

4
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Because the set of the Lyndonwords freely gen‑
erates the algebra of the quasi‑shuffle product [8], it
follows the isomorphism HR � Q[Hl, l ∈ LynY ].
Moreover, by using the expression of diagonal series
DY (see (11)), we can factorize the non‑commutative
generating series of multiple harmonic sums H :=∑
w∈Y ∗

Hww as follows

Proposition 6.

H =

↘∏
l∈LynY

exp(HΣl
Πl) (24)

= expHy1y1

↘∏

l∈LynY {y1}

exp(HΣl
Πl). (25)

The original generating series of multiple har‑
monic sums forms a multiple polylogarithms de‑
formed the factor 1

1−z , namely for all multiindices
s = (s1, s2, . . . , sr),

∑
n≥0

Hs(n)z
n =

Lis(z)
1− z

. (26)

Indeed,

Lis(z)
1− z

=
∑
n≥0

zn
∑

n1>...>nr≥1

zn1

ns1
1 . . . nsr

r

=
∑
n≥r

zn
∑

n≥n1>...>nr≥1

1

ns1
1 . . . nsr

r

=
∑
n≥0

Hs(n)z
n.

Herewe accept that Hs(n) = 0 for any n < r. In other
words, Hs(N) is the coefficient of zN in the Taylor
development of Lis(z)

1−z in the system {zN |N ∈ N}. By
the way, according to the representations of multiple
polylogarithms (in the above subsection) we obtain
relations or asymptotic expansions of multiple har‑
monic sums.

3.2.1 Generating series of multiple harmonic
sums on the alphabet X

For anywordw ∈ X∗, we denote GX
w (z) := Lw(z)

1−z and
GX(z) :=

∑
w∈X∗ GX

w (z). By the way, using formula
(20), we have the following expressions:

GX(1− z) =
1− z

z
σ[GX(z)]Z ,

∑
w∈X∗

GX
w (z) =

1− z

z

↘∏
l∈LynX

exp(LiSl
(z)σ(Pl))Z .

Example 6. According to equality (27), we reduce the
following relations by identifying local coordinates9:

GX
Sx0

(1− z) =
log(1− z)

z
,

GX
Sx1

(1− z) = − log(z)
z

,

GX
Sx0x1

(1− z) =
z − 1

z
GX

Sx0x1
(z)

+
1

z
log z log

1

1− z
+ ζ(Sx0x1

),

GX
S
x2
0x1

(z) =
z − 1

z
(−GX

S
x2
0x1

(z)

+ log zGX
Sx0x1

(z) +
log2 z log(1− z)

1− z
+

ζ(Sx2
0x1

)

1− z
),

GX
S
x0x2

1

(z) =
1− z

z
(−GX

S
x2
0x1

(z)

+ log zGX
Sx0x1

(z)− log2 zGX
Sx1

(z)

+
ζ(Sx2

0x1
)

1− z
).

We use the notation [zN ]GX
w (z) for the coeffi‑

cient of zN in the Taylor development of GX
w (z) in the

scale of comparison {(1 − z)i logj(1 − z), i, j ∈ N}.
From the representation of GX

w (z), we can reduce
asymptotic expansions of multiple harmonic sums in
the scale of comparison {zi logj(n), i, j ∈ N}.

Example 7.

HS
x0x2

1

= [zN ]GX
S
x0x2

1

= ζ(Sx0x2
1
)− logN + 1 + γ

N
+

1

2

logN
N2

+ O(
1

N3
).

3.2.2 Generating series of multiple harmonic
sums on the alphabet Y

We now use the linear projection πY :
Q〈X〉 −→ Q〈Y 〉 which associates every word
xs1−1
0 x1 . . . x

sr−1
0 x1 with the word ys1 . . . ysr and ad‑

mits the convention πY (wx0) = 0 for any w ∈ X∗.
Then, for any word w = ys1 . . . ysr ∈ Y ∗, we set
GY

w(z) :=
L(s1,...,sr)(z)

1−z and

GY (z) := πYGX(z) = πY

∑
w∈X∗

GX
w (z)w =

∑
w∈Y ∗

GY (z)w.

From this and formula (20), we have

GY (z)
z̃→1

exp((y1 + 1) log
1

1− z
)πY Z .(27)

Moreover, by expanding exp((y1 + 1) log 1
1−z ) in the

form of the original generating series of y1, we get

exp((y1 + 1) log
1

1− z
)

=
∑
k≥0

GY
yk
1
(z)yk1

=
∑
k≥0


∑

N≥0

Hyk
1
(N)zN


 yk1

9The examples in this paper are computed with Maple by using our package.
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=
∑
N≥0


∑

k≥0

Hyk
1
(N)yk1


 zN

=
∑
N≥0

exp


−

∑
k≥1

Hyk
(N)

(−y1)
k

k


 zN .

Consequently,

H = exp (Hy1
y1)

↘∏

l∈LynY {y1}

exp(HΣl
Πl)

= [zN ]GY (z)

Ñ→∞ exp


−

∑
k≥1

Hyk
(N)

(−y1)
k

k


πY Z .

Example 8. According to expression (28), we reduce
the following relations by identifying local coordi‑
nates:

HΣy1
(N) = ln(N) + γ + 1/2N−1 − 1/12N−2

+
1

120

1

N4
+O(N−5)

HΣy2
(N) = −N−1 + 1/2N−2 − 1/6N−3

+(
1

N4
) + ζ(Σ2)

HΣ
y2
1

(N) = 1/2 (ln(N) + γ)2 +
1/2 ln(N) + 1/2 γ

N

+
−1/12 ln(N)− 1/12 γ + 1/8

N2
− 1/24N−3

+(
1

120
ln(N) +

1

120
γ +

1

288
)
1

N4
+O(N−5)

HΣy3
(N) = −1/2N−2 + 1/2N−3 − 1/4

1

N4

+ζ(Σ3) +O(N−5)

HΣy2y1
(N) = 1/2 ζ(Σ3) +

1 + ln(N) + γ

N

+
−1/2− 1/2 γ − 1/2 ln(N)

N2

+(
7

18
+ 1/6 ln(N) + 1/6 γ)N−3 − 5

24

1

N4

+O(N−5).

3.3 Representations of polyzetas

As we see the definition of polyzetas at (2), these
convergent series are also compatible with the stuffle
product like multiple harmonic sums. Using the ex‑
pression in Proposition 6, we set

Z :=

↘∏

l∈LynY {y1}

exp(ζ(Σl)Πl). (28)

On the other hand, we conclude from (16) that
polyzetas are also obtained by letting z −→ 1 in mul‑
tiple polylogarithms. Due to the isomorphism in the
algebraic structures, we establish a bridge equation
between the generating series Z and Z as fol‑
lows.

Proposition 7 ([9]). We have a bridge equation between
the two spaces C〈〈X〉〉 and C〈〈Y 〉〉:

Z = B′(y1)πY (Z ), (29)

where B′(y1) = exp
(∑

k≥2
(−1)k−1ζ(k)

k yk1

)
.

C⟪X⟫

C⟪Y ⟫

Z⊔⊔

πY (Z⊔⊔ )

Haus (C⟪Y ⟫)

Haus⊔⊔ (C⟪X⟫)

B(y1)
Zγ

πY

Let Zn be the Q‑vector space generated by
polyzetas of weight n. Using this formula, we can
rewrite the two sides on the same transcendence ba‑
sis and then reduce the relations among polyzetas by
identifying the local coordinates. On the one hand,
by expressing the right hand side of (29) on the basis
{Σl}l∈LynY , we can identify coefficients on this basis
[9, 10]:

Example 9. Relations of polyzetas in terms of irre‑
ducible elements indexed by the basis {Σl}l∈LynY :
Weight 3: ζ(Σy2y1

) = 3
2ζ(Σy3

).
Weight 4: ζ(Σy4

) = 2
5ζ(Σy2

)2, ζ(Σy3y1
) =

3
10ζ(Σy2)

2, ζ(Σy2y2
1
) = 2

3ζ(Σy2)
2.

Weight 5:

ζ(Σy3y2
) = 3ζ(Σy3

)ζ(Σy2
)− 5ζ(Σy5

),

ζ(Σy4y1
) = −ζ(Σy3

)ζ(Σy2
) +

5

2
ζ(Σy5

),

ζ(Σy2
2y1

) =
3

2
ζ(Σy3

)ζ(Σy2
)− 25

12
ζ(Σy5

),

ζ(Σy3y2
1
) =

5

12
ζ(Σy5

),

ζ(Σy2y3
1
) =

1

4
ζ(Σy3

)ζ(Σy2
) +

5

4
ζ(Σy5

).

Weight 6:

ζ(Σy6) =
8

35
ζ(Σy2)

3,

ζ(Σy4y2
) = ζ(Σy3

)2 − 4

21
ζ(Σy2

)3,

ζ(Σy5y1
) =

2

7
ζ(Σy2

)3 − 1

2
ζ(Σy3

)2,

ζ(Σy3y1y2
) = −17

30
ζ(Σy2

)3 +
9

4
ζ(Σy3

)2,

ζ(Σy3y2y1
) = 3ζ(Σy3

)2 − 9

10
ζ(Σy2

)3,

ζ(Σy4y2
1
) =

3

10
ζ(Σy2

)3 − 3

4
ζ(Σy3

)2,

ζ(Σy2
2y

2
1
) =

11

63
ζ(Σy2

)3 − 1

4
ζ(Σy3

)2,

6
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ζ(Σy3y3
1
) =

1

21
ζ(Σy2

)3,

ζ(Σy2y4
1
) =

17

50
ζ(Σy2

)3 +
3

16
ζ(Σy3

)2.

Weight 7:

ζ(Σy4y3
) =

35

2
ζ(Σy7

)− 10ζ(Σy2
)ζ(Σy5

),

ζ(Σy5y2
) = 5ζ(Σy2

)ζ(Σy5
)− 21

2
ζ(Σy7)

+
4

5
ζ(Σy2)

2ζ(Σy3),

ζ(Σy6y1) = −ζ(Σy2)ζ(Σy5)−
2

5
ζ(Σy2)

2ζ(Σy3)

+
7

2
ζ(Σy7

),

ζ(Σy3y2
2
) =

3

2
ζ(Σy2

)2ζ(Σy3
)− 217

48
ζ(Σy7

),

ζ(Σy2
3y1

) =
7

24
ζ(Σy7

),

ζ(Σy4y1y2
) =

1

10
ζ(Σy2

)2ζ(Σy3
) +

7

48
ζ(Σy7

),

. . .

Weight 8

ζ(Σy8) =
24

175
ζ(Σy2)

4,

ζ(Σy5y3
) =

126

25
ζ(Σy2

)4 − 720ζ(Σy3y5
1
),

ζ(Σy6y2
) = −282

125
ζ(Σy2

)4 + 2ζ(Σy3
)ζ(Σy5

)

+ 288ζ(Σy3y5
1
),

ζ(Σy7y1) =
6

25
ζ(Σy2)

4 − ζ(Σy3)ζ(Σy5),

ζ(Σy2
3y2

) =
9

2
ζ(Σy3

)2ζ(Σy2
)− 44

5
ζ(Σy2

)4

− 15ζ(Σy3)ζ(Σy5) + 1440ζ(Σy3y5
1
),

. . .

On the other hand, we use the inverse of πY , de‑
noted by πX , to express equality (29) on the basis
{Sl}l∈LynX . It means that πX is a morphism defined
on the word by πX(ys1 . . . ysr ) = xs1−1

0 x1 . . . x
sr−1
0 x1,

and applying to the two sides of (29) we have

πX(Z ) = B′(x1)Z . (30)

Hence, we can represent the left hand side of this
bridge equation on the basis {Sl}l∈LynX and then
identifying local coordinates to reduce polynomial
relations among polyzetas [9, 10].

Example 10. Relations of polyzetas in terms of irre‑
ducible elements indexed by the basis {Sl}l∈LynX :
Weight 3: ζ(Sx0x2

1
) = ζ(Sx2

0x1
)

Weight 4:

ζ(Sx3
0x1

) =
2

5
ζ(Sx0x1

)2,

ζ(Sx2
0x

2
1
) =

1

10
ζ(Sx0x1

)2,

ζ(Sx0x3
1
) =

2

5
ζ(Sx0x1

)2.

Weight 5:

ζ(Sx3
0x

2
1
) = −ζ(Sx2

0x1
)ζ(Sx0x1

) + 2ζ(Sx4
0x1

),

ζ(Sx2
0x1x0x1

) = −3

2
ζ(Sx4

0x1
) + ζ(Sx2

0x1
)ζ(Sx0x1

),

ζ(Sx2
0x

3
1
) = −ζ(Sx2

0x1
)ζ(Sx0x1) + 2ζ(Sx4

0x1
),

ζ(Sx0x1x0x2
1
) =

1

2
ζ(Sx4

0x1
), ζ(Sx0x4

1
) = ζ(Sx4

0x1
).

Weight 6:

ζ(Sx5
0x1

) =
8

35
ζ(Sx0x1

)3,

ζ(Sx4
0x

2
1
) =

6

35
ζ(Sx0x1

)3 − 1

2
ζ(Sx2

0x1
)2,

ζ(Sx3
0x1x0x1

) =
4

105
ζ(Sx0x1

)3,

ζ(Sx3
0x

3
1
) =

23

70
ζ(Sx0x1

)3 − ζ(Sx2
0x1

)2,

ζ(Sx2
0x1x0x2

1
) =

2

105
ζ(Sx0x1

)3,

ζ(Sx2
0x

2
1x0x1

) = − 89

210
ζ(Sx0x1

)3 +
3

2
ζ(Sx2

0x1
)2,

ζ(Sx2
0x

4
1
) =

6

35
ζ(Sx0x1)

3 − 1

2
ζ(Sx2

0x1
)2,

ζ(Sx0x1x0x3
1
) =

8

21
ζ(Sx0x1)

3 − ζ(Sx2
0x1

)2,

ζ(Sx0x5
1
) =

8

35
ζ(Sx0x1)

3.

Weight 7

ζ(Sx5
0x

2
1
) = −ζ(Sx4

0x1
)ζ(Sx0x1)

− 2

5
ζ(Sx0x1

)2ζ(Sx2
0x1

) + 3ζ(Sx6
0x1

),

ζ(Sx4
0x1x0x1

) = −5ζ(Sx6
0x1

) + 3ζ(Sx4
0x1

)ζ(Sx0x1
),

ζ(Sx4
0x

3
1
) = −23

60
ζ(Sx0x1

)2ζ(Sx2
0x1

)

− 2ζ(Sx4
0x1

)ζ(Sx0x1
) + 5ζ(Sx6

0x1
),

ζ(Sx3
0x1x2

0x1
) = 2ζ(Sx6

0x1
)− ζ(Sx4

0x1
)ζ(Sx0x1

),

ζ(Sx3
0x1x0x2

1
) = − 1

20
ζ(Sx0x1

)2ζ(Sx2
0x1

)

− 1

2
ζ(Sx4

0x1
)ζ(Sx0x1

) +
19

16
ζ(Sx6

0x1
),

. . .

Weight 8

ζ(Sx7
0x1

) =
24

175
ζ(Sx0x1

)4,

ζ(Sx6
0x

2
1
) =

6

35
ζ(Sx0x1

)4 − ζ(Sx4
0x1

)ζ(Sx2
0x1

),

ζ(Sx5
0x1x0x1

) = − 6638

30625
ζ(Sx0x1

)4

− 149753

4725
ζ(Sx4

0x1
)ζ(Sx2

0x1
)

− 29026

1575
ζ(Sx2

0x1
)2ζ(Sx0x1

)

+
2

5
ζ(Sx0x2

1x0x4
1
),

7
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ζ(Sx5
0x

3
1
) = −11

4
ζ(Sx4

0x1
)ζ(Sx2

0x1
)

+
1

2
ζ(Sx2

0x1
)2ζ(Sx0x1

) +
61

175
ζ(Sx0x1

)4,

. . .

The above examples, one again, show us that
each polyzetas only has a linear representation of
plyzetas of the same weight. Hence, we can list the
elements of linear bases of Z corresponding to the
bases {Σl}l∈LynY and {Sl}l∈LynX that confirm the
Zagier’s dimension conjecture10 (see [4]). Moreover,
we can reduce algebraic bases (the normal product)
from these representations. We showhere two lists of
irreducible elements up to weight 12 (see more [11]):

1. For the basis {Σl}l∈LynY : ζ(Σy2
), ζ(Σy3

),
ζ(Σy5), ζ(Σy7), ζ(Σy3y5

1
), ζ(Σy9), ζ(Σy3y7

1
),

ζ(Σy11), ζ(Σy2y9
1
), ζ(Σy2

2y
8
1
), ζ(Σy3y9

1
).

2. For the basis {Sl}l∈LynX : ζ(Sx0x1
), ζ(Sx2

0x1
),

ζ(Sx6
0x1

), ζ(Sx6
0x1

), ζ(Sx0x2
1x0x4

1
), ζ(Sx8

0x1
),

ζ(Sx0x2
1x0x6

1
), ζ(Sx10

0 x1
), ζ(Sx0x2

1x0x2
1x0x4

1
),

ζ(Sx0x1x0x9
1
), ζ(Sx3

0x1x0x7
1
).

4 Conclusion

We represented special functions (multiple harmonic
sums, polyzetas, and multiple polylogarithms) in
forms of non‑commutative generating series indexed
by transcendence bases of quasi‑shuffle algebras. By
identifying the local coordinates of the Hausdorff
groups, in shuffle and stuffle Hopf algebras, we can
reduce polynomial relations or asymptotic expan‑
sions of these special functions indexed by the bases.
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