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Abstract. Using the functional integral method for the Heisenberg antiferromagnetic spin chain with 

the added Dzyaloshinskii–Moriya interaction in the longitudinal magnetic field, we find an expression 

for the free energy of the spin chain via spin fluctuations. From this expression, we derive quantities 

that characterize the antiferromagnetic order and the phase transition, such as staggered magnetization 

and total magnetization Next, we deduce the significant effect of the Dzyaloshinskii–Moriya 

interaction on reducing the antiferromagnetic order. The total magnetization can be deviated from the 

initial one due to the Dzyaloshinskii–Moriya interaction and the magnetic field causing a canting of the 

spins. Besides, the remarkable role of the transverse spin fluctuations of the spin chain is also 

indicated. 

Keywords: antiferromagnetic spin chain, Dzyaloshinskii–Moriya interaction, transverse spin 
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1 Introduction 

One dimensional (1D) spin systems have studied 

extensively over the last years because of their 

unusual new magnetic phenomena which have 

been found out. With the mathematical simplicity 

of models applied for the 1D systems, they have 

been considered as ideal objects for investigating 

effect of thermal and quantum fluctuations on 

thermodynamic properties and the phase 

transitions [1, 2]. Recently some real materials in 

the 1D or quasi-1D magnetic systems have been 

found out, such as Sr2V3O9 [3], BaCu2Ge2O7 [4], 

Cu(C8H6N2)Cl2 [5], (C7H10N)2CuBr4 [6], 

K2CuSO4Cl2 and K2CuSO4Br2 [7], which cannot be 

described by a pure Heisenberg model. In other 

words, there are definitely the presence of 

anisotropies in these real materials, such as 

anisotropic exchange interactions, magneto- 

crystalline anisotropy or ones from spin-orbit 

couplings which may cause antisymmetric 

superexchange interaction.  

The antisymmetric interaction was at first 

recommended by Dzyaloshinskii IE [8] after the 

observation of a weak ferromagnetism in the 

antiferromagnetic α-Fe2O3 crystals, and later, 

Moriya T [9] pointed out that spin-orbit couplings 

were the microscopic mechanism of this 

interaction. So the antisymmetric interaction is 

also known as the Dzyaloshinskii–Moriya 

interaction (DMI). Although the DM term is about 

a few per cent of the Heisenberg exchange one 

[10, 11], which only makes a small canting, the 

effect of the DMI is significant.  In 

antiferromagnetic (AFM) systems, a small DMI 
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favours a canting of the antiparallel arrangement 

of the magnetic moments producing a weak 

ferromagnetic (FM) behaviour which couples 

strongly to an external magnetic field [10]. 

Besides, the DMI has caused a variety of 

interesting effects in low dimensional magnetic 

systems depending on the values of this 

interaction, such as unusual phase diagrams [7, 

12]; stabilization of chiral magnetic orderings [13]; 

quantum chaos in the Heisenberg spin chain [14]; 

or skyrmion formation in two dimensional (2D) 

systems [15, 16].  

Recently, the Heisenberg model with AFM 

exchange interactions in the presence of a 

longitudinal external magnetic field and a DM 

interaction has been studied by using the mean-

field approximation (MFA) and showed that the 

increase of either the external field or the DMI has 

decreased the corresponding phase transition 

temperature [17]. However, the significant role of 

the spin fluctuations which have not considered 

yet in [17], which is one of the restrictions of the 

MFA. It is noted that the fluctuations have the 

important influences on the thermodynamic 

behaviours of the low dimensional systems [1, 18, 

19, 20]. Therefore, in the current article we use the 

functional integral method to study the effect of 

the DMI on the AFM spin chain via the spin 

fluctuations with the Heisenberg model in the 

presence of the longitudinal magnetic field and 

from that highlighting the role of the transverse 

spin fluctuations due to the DMI and the 

magnetic field. 

2 Theory 

Consider a the AFM 1D Heisenberg model with 

two sublattices labelled A ( )spin and B ( )spin  

which regularly align along the x’Ox axis in the 

presence of the longitudinal magnetic field 

( )0 0, ,h h , Hamiltonian for this system with the 

added Dzyaloshinskii-Moriya interaction has 

form [13]: 

( )

( ) ( )

( ) ( )
2 21

2



= + +

+  − +

 
+ 

 
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' ''

, '

'

, '

,
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j j

z z
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j j j

z z
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j

H J S S S S S S

D S S g h S S

I S S

 (1) 

where the first term in Hamiltonian (1) favours 

parallel/antiparallel exchange coupling of the 

spins (depending on the sign of J, J > 0 for the 

AFM system and J < 0 for the FM system), 

whereas the second term shows preference for an 

orthogonal alignment, which causes the canting of 

the spins; the third term is the interaction between 

the spins with the magnetic field, here  0h , B  

is the Bohr magneton and g is the gyromagnetic 

ratio; and the last term shows the single-ion 

anisotropy of the spins given in (1) to suppress 

the spin fluctuations and thus maintains the AFM 

ground state in the system, the anisotropy is 

chosen to be parallel to the direction of the 

applied magnetic field, i.e., / /I h . Both the 

exchange parameter J and the DM vector D  

depend on the relative positions of the spins and 

here only the interactions between the nearest 

neighbor spins are considered. In this article D   

is chosen in the z-direction, thus Hamiltonian (1) 

is rewritten as follows: 

( )

( ) ( )

( ) ( )
2 21

2



= + +

+ − − +

 
− + 

 



 



' ''

. '

''

, '

.

x x y y z z
Aj Bj Aj BjAj Bj

j j

x y y x z z
Aj Bj B Aj BjAjBj

j j j

z z
Aj Bj

j

H J S S S S S S

D S S S S g h S S

I S S

 (2) 

Next, the Hamiltonian (2) is diagonalized 

by performing a spin coordinate transformation, 

i.e., a spin rotation about the z-axis with a specific 

angle  =tan /D J  [21] 
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cos sin ,

sin cos

x x y
j j j
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jj j

S S S

S S S
 (3) 

is done, thus the Hamiltonian (2) becomes:  

( )
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From (4), it can be seen that the Heisenberg 

model with the added Dzyaloshinskii-Moriya 

interaction (1) is transformed into the XXZ 

anisotropic Heisenberg model with the 

anisotropic exchange parameter  = cos .  

In this article, we only consider the case of 

the small DM term causing a modest canting of 

the spins in the AFM order, thus the ground state 

of the spin chain remains AFM, so the spin 

variables 
( )A B jS  can still be transformed by 

introducing the fluctuations from its mean value 

( )

z

A BS  along the spin chain: 
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Therefore, Hamiltonian (4) is divided into part: 
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here = −ABJ J . Rewriting intH  (7) in the matrix 

form: 

( ) ( ) ( )
1
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  
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here  ( )
 'J xk  is an element of the symmetric 

second-order matrix ( )J xk  of the second order 

due to two spins in each unit cell:  
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and 
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Using the functional integral method (see 

the detailed calculations in [1, 18, 22]) to calculate 

the free energy 

( ) ( )0

0

1 1 
 

− = − − −
  intln Tr e ln exp ,

H
F H   the 

specific expression for the free energy of the AFM 

spin chain is obtained:  
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here E is the unit matrix. ( )M , z
xk ( ),M ,x y

xk and 

E are the matrices which have the same size as the 

matrix ( )J xk  in (9) and (10). ( ),M ,x y
xk  and 

( )Mz
xk  relate to the transverse spin fluctuations 

and the longitudinal spin fluctuations, 

respectively: 
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with ( )( )A Bb y  is the Brillouin function, ( )( )' A Bb y  

is its 1st derivative and ,  A By y  are the total fields 

(including the external magnetic field and the 

mean field) acting on the spins A and the spins B: 

( ) ( )2   = + +( ) ( ) ( ) .A B B AB B A A By g h J b y Ib y   (14) 

3 Numerical Results and 

Discussion 

In the numerical calculations, the exchange 

parameter J is used as a new scale of energy and 

then the reduced external magnetic field is 

=rh Bg h J ; the reduced temperature is 

 =r Bk T J ; and 
1




= −


( )

( )
A B

B A B

F
m

Ng h
 denotes the 

magnetization per site A or B. However, we will 

analyze the effects of the magnetic field and the 

DMI through two quantities describing the 

magnetic order and the phase transition of the 

AFM spin chain, they are total magnetization T(m )

and staggered magnetization S(m ) [17], which are 

given as below: 

( )
1

2
= −Tm A Bm m  (15) 

and 

( )
1

2
= +Sm A Bm m  (16) 

Fig. 1(a) shows the behaviour of the 

staggered magnetization Sm  as a function of the 

reduced temperature for various values of the DM 

parameter without the magnetic field and in this 

case =A Bm m , so 0=Tm . As mentioned in [18], a 

small single-ion anisotropic parameter need to be 

taken into consideration to suppress the thermal 

fluctuations and thus prevent a disruption of the 

AFM order in the spin chain due to the size effect 

according to the Mermin-Wagner theorem [20]. 

From Fig. 1(a), one can see that the DM parameter 

reduces the AFM order of the system. This result 

was also indicated by the MFA [17]. However 

here we insist on the role of the transverse spin 

fluctuations produced by the DMI, which are 

ignored in the MFA. The increase of the DMI 

causes the increase of the transverse thermal 

fluctuations  x,y
Sm (see Fig. 1(b)), which makes the 

magnitude of the staggered magnetization Sm  

reduced even at 0 r  and the AFM order 

breakable with an enough large value of the DM 

parameter (see the inset in Fig. 1(b)).  

Fig. 1. The dependence on the reduced temperature 

with various values of the DM parameter of (a) the 

staggered magnetization and (b) the thermal spin 

fluctuations, the inset shows ones for 0 15= .D J . Here 

0=rh , 0 01=/ .I J  and 0 5= .S . 

(a) 

(b) 
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From the discussion above, the dependence 

of the staggered magnetization on the DM 

parameter is considered in Fig. 2 to see more 

clearly the significant influence of the DM 

interaction on the AFM order of the spin chain. 

From the Fig. 1 and Fig. 2, one can see that there 

exists a critical value ( )
crJD  which is the 

boundary between the stable range ( )( )
crJD J D  

and the unstable range ( )( )
crJD J D , which 

indicates that there is a magnetic phase transition 

occurring at this point.   

It should be noted that the critical value 

( )
crJD  depends on other factors such as the 

anisotropy and the magnetic field, for example, 

with 0 01/ .I J  and 0=rh  we have ( ) 0 15
cr

.JD  

(see the inset in Fig. 1(b)), or with 0 01/ .I J  and 

0 05=rh . , ( ) 0 10
cr

.JD  (see Fig. 3(a)). Because the 

DM term is only about a few per cent of the 

Heisenberg exchange one without the single 

anisotropy [10, 11] and only produces a small 

canting of the spins, this result is quite suitable. 

When ( )
crJD J D , the plot of  Sm  vs D J  is 

smooth, stable and magnitude of Sm  decreases 

when increasing the DM parameter, the system is 

now in the AFM phase. When ( )
crJD J D , this 

curve goes up and down chaotically, which shows 

that the spin chain is in another complicated 

magnetic phase due to an abnormal arrangement 

of the spins when increasing D J . To see more 

clearly this phase transition point, the dependence 

on D J  of the derivative Sdm dD  is shown in 

Fig. 2(b), where one can observe a sharp peak at

( )=
crJD J D corresponding to the phase transition 

point in the plot of the dependence on D J  of the 

staggered magnetization. 

 

 

Fig. 2. The dependence on the DM parameter of (a) the 

staggered magnetization and (b) the derivative 

Sdm dD , here 0=rh , 0 005 =r . , 0 5= .S  and 

0 01= .I J . The inset in Fig. 2(a) shows the thermal spin 

fluctuations. 

 

 

Fig. 3. The dependence on the reduced temperature of 

(a) the total magnetization with various values of the 

magnetic field and the DM parameter; and (b) the 

sublattice magnetizations with 0 01 0= =rh . ,  /   D J . 

Here 0 01= .I J  and 0 5= .S . 

(a) 

(a) 

(b) 

(b) 
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However, the complicated behaviours of 

the spin chain in the ( )
crJD J D  range cannot be 

precisely calculated and explained within the 

scope of this article, because the translational 

symmetry of the spin chain is broken and the 

transverse spin fluctuations become 

overwhelming in this range (see the inset in Fig. 

2(a)). Some works have also studied the spin 

structures in the strong DMI range and showed 

the unusual spin structures, such as chiral 

magnetism order (by using the first principle 

calculations) [23] or the skyrmion formation (by 

using the density functional calculations) [16, 24] 

in some low dimensional magnetic systems.  

Fig. 3(a) shows the dependence on the 

temperature of the total magnetization Tm  for 

various values of the reduced magnetic field and 

the DM parameter. For 0=D , the model is a 

simple AFM spin chain in the magnetic field and 

this magnetic field is parallel to the spins A and 

antiparallel to the spins B. Therefore, the magnetic 

field 0


= rh Bg h

J
 forces the spins B to rotate in 

the field’s direction from the initial orientation 

( )  of the spins B,  which causes the rotation of 

the spins A through the exchange interactions 

between the spins, so we have the non-zero total 

magnetization 0Tm . In this situation, there is a 

competition between the thermal energy, the 

exchange energy, the anisotropic energy and the 

magnetic energy in the spin chain. When the 

temperature increases, the thermal energy lessens 

the initial magnetization (or the spontaneous 

magnetization) in both sublattices A and B, as 

shown in Fig. 3(b). As the longitudinal magnetic 

field is applied leading to an increase of the total 

magnetization with the temperature and Tm  

reaches to a sharp peak in the dependence on the 

temperature at ( ) =r r cr
. When ( ) r r cr

  the 

effect of thermal energy surpasses one of the 

magnetic energy and then Tm  decreases with the 

temperature. This similar behaviour in the 

dependence of the sublattice magnetizations on 

the temperature in the presence of the 

longitudinal magnetic field was also obtained for 

the AFM and ferrimagnetic systems by using the 

sublattice self-consistent numerical procedure 

[25]. As increasing the DM parameter /D J , this 

total magnetization is more deviated from the 

initial one because the DMI increases the 

transverse spin fluctuations (see Fig. 4). Therefore, 

it should be noted that the combination between 

the magnetic field and the DMI make the AFM 

order broken faster in the increment of /D J , for 

example, with 0 05=rh .  the instability starts to 

happen when 0 10/ .D J .  

 

Fig. 4. The dependence on the reduced temperature of 

the thermal spin fluctuations with various values of the 

magnetic field and the DM parameter, here 0 01= .I J  

and 0 5= .S . 

4 Conclusion 

In this article, the effect of the DMI on the AFM 

behaviours and the phase transition of the spin 

chain in the presence of the longitudinal magnetic 

field is investigated by using the functional 

integral method. The spin fluctuations are taken 

into account through the mean field 

approximation and thus the role of them, namely 

the transverse ones, is highlighted. It can be seen 

that when applying a magnetic field parallel to 

the initial direction of the spins, it tends to rotate 

the spins perpendicular to the applied field. 



Hue University Journal of Science: Natural Science 
Vol. 130, No. 1D, 31–38, 2021 

pISSN 1859-1388 
eISSN 2615-9678 

 

DOI: 10.26459/hueunijns.v130i1D.6423 37 

 

 

Therefore the combination of the DMI and the 

magnetic field leads to the increasing of the 

transverse spin fluctuations which reduces the 

AFM order and causes the deviation of the total 

magnetization from the initial one. Besides, there 

exists the critical value of the DMI at that the 

AFM order is broken and then the AFM phase of 

the spin chain transforms into other complicated 

magnetic ones. This problem cannot be solved 

within the scope of the current article and further 

calculations are required. 
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