Some remarks on Pixley-Roy hyperspaces

Luong Quoc Tuyen¹, Ong Van Tuyen², Nguyen Xuan Truc^{1*}

¹ Department of Mathematics, The University of Danang - University of Science and Education, Vietnam ² Hoa Vang High School, Da Nang City, Vietnam

> *Correspondence to Nguyen Xuan Truc <nxtruc2003@gmail.com> (Received: 10 December 2023; Revised: 31 January 2025; Accepted: 26 February 2025)

Abstract. In [1], H.T.O. Trieu, L.Q. Tuyen and O.V. Tuyen proved that a space *X* is countable if and only if PR[X] is strongly star-Lindelöf. In this paper, we study the extension of cellular-compact, cellular-Lindelöf, strongly star-Hurewicz, strongly star-Rothberger, strongly star-Menger spaces on hyperspaces with the Pixley-Roy topology. For a space *X* and $n \in \mathbb{N}$, we prove that

- (a) If PR[X] or $PR_n[X]$ is cellular-compact, then X is cellular-compact. However, there exists a compact space X such that $|X| = \omega$, but $PR_n[X]$ for all $n \in \mathbb{N}$ and PR[X] are not cellular-compact spaces.
- (b) If PR[X] or $PR_n[X]$ is cellular-Lindelöf, then X is cellular-Lindelöf.
- (c) X is countable if and only if PR[X] is a strongly star-Hurewicz space, if and only if PR[X] is a strongly star-Rothberger space if and only if PR[X] is a strongly star-Menger space.

Keywords: Hyperspace, Pixley-Roy topology, cellular-compact, cellular-Lindelöf, strongly star-Hurewicz, strongly star-Rothberger, strongly star-Menger

1 Introduction and preliminaries

The topological and generalized metric properties on Pixley–Roy hyperspaces have been studied by many authors from different points of view. Specifically, they studied the relation between a space *X* satisfying such a property and its Pixley-Roy hyperspaces PR[X] and $PR_n[X]$ satisfying the same property [1, 2, 3, 4, 5, 6, 7]. Li *Z*. demonstrated important results concerning selection principles, such as quasi-Hurewicz, quasi-Rothberger, quasi-Menger (see [2]), and Hurewicz separability (see [3]), within the framework of the Pixley-Roy hyperspace PR[X]. In [1], H.T.O. Trieu, L.Q. Tuyen and O.V. Tuyen proved that a space *X* is countable if and only if PR[X] is strongly star-Lindelöf.

Recently, the new generalized metric properties, such as cellular-compact, cellular-Lindelöf, strongly star-Hurewicz, strongly star-Rothberger, and strongly star-Menger spaces, are introduced in [8, 9, 10]. These properties generalize classical notions and offer deeper insights into hyperspace topology. Studying these in the Pixley-Roy setting is motivated by their applications to function spaces, selection principles, and covering properties, as well as their ability to illuminate how such properties transfer between a space *X* and its hyperspaces. In this paper, we study them on hyperspaces with the Pixley-Roy topology. For a space *X* and $n \in \mathbb{N}$, we prove that

(a) If PR[X] or PR_n[X] is cellular-compact, then X is cellular-compact. However, there exists a compact space *X* such that $|X| = \omega$, but $PR_n[X]$ for all $n \in \mathbb{N}$ and PR[X] are not cellular-compact spaces.

- (b) If PR[X] or PR_n[X] is cellular-Lindelöf, then X is cellular-Lindelöf.
- And, the following statements are equivalent:
 - (a) *X* is countable.
 - (b) PR[X] is a strongly star-Hurewicz space.
 - (c) PR[X] is a strongly star-Rothberger space.
 - (d) PR[X] is a strongly star-Menger space.

Throughout this paper, all spaces are assumed to be Hausdorff and \mathbb{N} denotes the set of all positive integers with the first infinite ordinal denoted by ω . Moreover, if \mathcal{P} is a family of subsets of a space *X* and $A \subset X$, denote

$$\begin{aligned} \mathtt{St}(A,\mathcal{P}) &= \bigcup \{ P \in \mathcal{P} : P \cap A \neq \emptyset \}; \\ & \bigcup \mathcal{P} = \bigcup \{ P : P \in \mathcal{P} \}. \end{aligned}$$

The set PR[X] is the set of all non-empty finite subsets of a space *X*. For each $F \in PR[X]$ and $A \subset X$, denote

$$[F, A] = \{H \in PR[X] : F \subset H \subset A\}.$$

The *Pixley-Roy hyperspace* PR[X] over a space *X* is defined by C. Pixley and P. Roy in [11], with the topology generated by the sets of the form [F, V], where $F \in PR[X]$ and *V* is an open subset in *X* containing *F*. For any space *X*, PR[X] is zero-dimensional, completely regular and hereditarily metacompact (see [12]).

For each $n \in \mathbb{N}$, let

$$\mathtt{PR}_n[X] = \{F \in \mathtt{PR}[X] : |F| \le n\}.$$

Then,

$$\mathtt{PR}[X] = \bigcup_{n=1}^{\infty} \mathtt{PR}_n[X]$$

and $PR_n[X] \subset PR_{n+1}[X]$ for each $n \in \mathbb{N}$.

Remark 1.1. Let *X* be a space and $n \in \mathbb{N}$.

- (a) PR_n[X] is a closed subspace of PR[X] and in particular, PR₁[X] is a closed discrete subspace of PR[X] [13].
- (b) Every PR_m[X] is a closed subspace of PR_n[X] for each m, n ∈ N, m < n [5].</p>

Definition 1.2. Let *X* be a space.

- (a) *X* is *Lindelöf* [14], if for any open cover of *X*, there exists a countable subcover.
- (b) X is *cellular-Lindelöf* [8], if for any disjoint family U of non-empty open sets, there is a Lindelöf subspace L such that L ∩ U ≠ Ø for each U ∈ U.
- (c) *X* is *cellular-compact* [9], if for any disjoint family \mathcal{U} of non-empty open sets, there is a compact subspace *K* such that $K \cap U \neq \emptyset$ for each $U \in \mathcal{U}$.
- (d) X is *strongly star-Hurewicz* [10], if for each sequence $\{U_n : n \in \omega\}$ of open covers of X, there exists a sequence $\{F_n : n \in \omega\}$ of finite subsets of X such that for each $x \in X$, $x \in St(F_n, U_n)$ for all but finitely many n.
- (e) X is strongly star-Menger [10], if for each sequence {U_n : n ∈ ω} of open covers of X, there exists a sequence {F_n : n ∈ ω} of finite subsets of X such that

$${\mathtt{St}(F_n,\mathcal{U}_n):n\in\omega}$$

is an open cover of X.

(f) *X* is *strongly star-Rothberger* [10], if for each sequence $\{U_n : n \in \omega\}$ of open covers of *X*, there exists a sequence

$$\{x_n:n\in\omega\}$$

of elements of *X* such that

$${\mathtt{St}(x_n,\mathcal{U}_n):n\in\omega}$$

is an open cover of X.

Remark 1.3. (a) Compact \Rightarrow cellular-compact \Rightarrow cellular-Lindelöf.

- (b) Compact \Rightarrow Lindelöf \Rightarrow cellular-Lindelöf.
- (c) Strongly star-Hurewicz \Rightarrow strongly star-Menger
- (d) Strongly star-Rothberger \Rightarrow strongly star-Menger

2 Main result

Lemma 2.1 ([5], Lemma 2). Let X be a space. If C is a compact subset of PR[X], then $\bigcup C$ is a compact subset of X.

Theorem 2.2. Let X be a space and $n \in \mathbb{N}$. If PR[X] or $PR_n[X]$ is cellular-compact, then X is cellular-compact.

Proof. Let PR[X] be cellular-compact and U be a disjoint family of non-empty open sets in *X*. For each $U \in U$, take $x \in U$ and put

$$\mathfrak{U}=\Big\{[\{x\},U]:U\in\mathcal{U}\Big\}.$$

Then, \mathfrak{U} is a disjoint family of non-empty open sets in PR[X]. Since PR[X] is cellular-compact, there exists a compact subspace \mathcal{K} of PR[X] such that

$$\mathcal{K} \cap [\{x\}, U] \neq \emptyset$$

for each $U \in \mathcal{U}$. Thus, for each $U \in \mathcal{U}$, there exists $F \in \mathcal{K}$ such that

$$\{x\} \subset F \subset U$$

This implies that

$$(\bigcup \mathcal{K}) \cap U \neq \emptyset$$

for each $U \in U$. Moreover, $\bigcup \mathcal{K}$ is compact in X by Lemma 2.1. Therefore, X is cellular-compact.

Similar to the above proof, we claim that for each $n \in \mathbb{N}$, if $PR_n[X]$ is cellular-compact, then X is cellular-compact. \Box

Example 2.3. There exists a compact space *X* such that $|X| = \omega$, but $PR_n[X]$ for all $n \in \mathbb{N}$ and PR[X] are not cellular-compact spaces.

Proof. Assume that

$$X = \{x_0\} \cup \{x_k : k \in \mathbb{N}\},\$$

where every x_k and x_0 are different from each other. The set *X* endowed with the following topology: each x_k is isolated; a basic neighborhood of x_0 has the form

$$\{x_0\} \cup \{x_k : k \ge m\}$$

for some $m \in \mathbb{N}$.

(1) It is obvious that *X* is compact.

(2) PR[X] is not cellular-compact. In fact, let

$$\mathfrak{U} = \left\{ \left[\{x_k\}, \{x_k\} \right] : k \in \mathbb{N} \right\}.$$

Then, \mathfrak{U} is a disjoint family of non-empty open sets in PR[X]. We prove that for each \mathcal{K} compact in PR[X], there exists $k \in \mathbb{N}$ such that

$$\mathcal{K} \cap [\{x_k\}, \{x_k\}] = \emptyset.$$

Otherwise, assume that there exists \mathcal{K} compact in PR[X] such that for each $k \in \mathbb{N}$, we have

$$\mathcal{K} \cap [\{x_k\}, \{x_k\}] \neq \emptyset.$$

Then, $\{x_k\} \in \mathcal{K}$. We put

$$\mathcal{K}_1 = \mathcal{K} \setminus \{\{x_k\} : k \in \mathbb{N}\}.$$

Thus,

$$\mathfrak{V} = \mathfrak{U} \cup \{[F, X] : F \in \mathcal{K}_1\}$$

is an open cover of \mathcal{K} in PR[X]. Since for each $F \in \mathcal{K}_1$, or $F = \{x_0\}$ or $|F| \ge 2$, we claim that

$$\{x_k\} \notin [F, X]$$

for each $k \in \mathbb{N}$ and for each $F \in \mathcal{K}_1$. This implies that \mathfrak{V} does not have any finite subcover of \mathcal{K} , which is a contradiction.

(3) $PR_n[X]$ is not cellular-compact for all $n \in \mathbb{N}$. In fact, let

$$\mathfrak{U}=\Big\{[\{x_k\},\{x_k\}]:k\in\mathbb{N}\Big\}.$$

Then, \mathfrak{U} is a disjoint family of non-empty open sets in $PR_n[X]$. We prove that for each \mathcal{K} compact in $PR_n[X]$, there exists $k \in \mathbb{N}$ such that

$$\mathcal{K}\cap [\{x_k\}, \{x_k\}] = \emptyset.$$

DOI: 10.26459/hueuni-jns.v134i1B.7340

Otherwise, assume that there exists \mathcal{K} compact in $PR_n[X]$ such that for each $k \in \mathbb{N}$, we have

$$\mathcal{K} \cap [\{x_k\}, \{x_k\}] \neq \emptyset$$

Then, $\{x_k\} \in \mathcal{K}$. We put

$$\mathcal{K}_1 = \mathcal{K} \setminus \{\{x_k\} : k \in \mathbb{N}\}.$$

Thus,

$$\mathfrak{V} = \mathfrak{U} \cup \Big\{ [F, X] \cap \mathtt{PR}_n[X] : F \in \mathcal{K}_1 \Big\}$$

is an open cover of \mathcal{K} in $PR_n[X]$. Since for each $F \in \mathcal{K}_1$, or $F = \{x_0\}$ or

$$2\leq |F|\leq n,$$

we claim that

$$\{x_k\} \notin [F, X] \cap \mathtt{PR}_n[X]$$

for each $k \in \mathbb{N}$ and for each $F \in \mathcal{K}_1$. This implies that \mathfrak{V} does not have any finite subcover of \mathcal{K} , which is a contradiction.

Lemma 2.4. Let X be a space. If \mathcal{L} is a Lindelöf subset of PR[X], then $\bigcup \mathcal{L}$ is a Lindelöf subset of X.

Proof. Let \mathcal{U} be an open cover of $\bigcup \mathcal{L}$ in X. Then, for each $F \in \mathcal{L}$, we have

$$F\subset \bigcup \mathcal{L}\subset \bigcup \mathcal{U}.$$

Thus, for each $x \in F$, there exists $U_x \in U$ such that $x \in U_x$. Since $F \in [F, \bigcup_{x \in F} U_x]$ for each $F \in \mathcal{L}$, we claim that

$$\mathfrak{U}=\left\{[F,\bigcup_{x\in F}U_x]:F\in\mathcal{L}\right\}$$

is an open cover of \mathcal{L} in PR[X]. On the other hand, since \mathcal{L} is Lindelöf, there exists a countable subfamily \mathfrak{V} of \mathfrak{U} such that $\mathcal{L} \subset \bigcup \mathfrak{V}$. This implies that there exists $\{F_i : i \in \mathbb{N}\} \subset \mathcal{L}$ such that

Put

$$\mathcal{V}=\Big\{U_x:x\in F_i,i\in\mathbb{N}\Big\}.$$

 $\mathfrak{V}=\Big\{[F_i,\bigcup_{x\in F_i}U_x]:i\in\mathbb{N}\Big\}.$

Because each set F_i is finite, V is a countable subfamily of U. Hence, we only need to prove that

 $\bigcup \mathcal{L} \subset \bigcup \mathcal{V}.$

Take any point $z \in \bigcup \mathcal{L}$, then $z \in A$ for some $A \in \mathcal{L}$. This implies that there exists $i \in \mathbb{N}$ such that

$$A \in [F_i, \bigcup_{x \in F_i} U_x],$$

hence $A \subset \bigcup_{x \in F_i} U_x$. Therefore,

$$z \in U_x \subset \bigcup \mathcal{V}$$

for some $x \in F_i$.

Theorem 2.5. Let X be a space and $n \in \mathbb{N}$. If PR[X] or $PR_n[X]$ is cellular-Lindelöf, then X is cellular-Lindelöf.

Proof. Let PR[X] be cellular-Lindelöf and U be a disjoint family of non-empty open sets in *X*. For each $U \in U$, take $x \in U$ and put

$$\mathfrak{U}=\Big\{[\{x\},U]:U\in\mathcal{U}\Big\}.$$

Then, \mathfrak{U} is a disjoint family of non-empty open sets in PR[X]. Since PR[X] is cellular-Lindelöf, there exists a Lindelöf subspace \mathcal{L} of PR[X] such that

$$\mathcal{L} \cap [\{x\}, U] \neq \emptyset$$

for each $U \in \mathcal{U}$. Thus, for each $U \in \mathcal{U}$, there exists $F \in \mathcal{L}$ such that

 $\{x\} \subset F \subset U.$

This implies that

$$(\bigcup \mathcal{L}) \cap U \neq \emptyset$$

for each $U \in U$. Moreover, $\bigcup \mathcal{L}$ is Lindelöf in *X* by Lemma 2.4. Therefore, *X* is cellular-Lindelöf.

Similar to the above proof, we claim that for each $n \in \mathbb{N}$, if $PR_n[X]$ is cellular-Lindelöf, then X is cellular-Lindelöf.

For a space *X*, it follows from Remark 1.1(1) and [15, Theorem 3.1] that $PR_1[X]$ is not cellular-Lindelöf if $PR_1[X]$ is uncountable. On the other hand, *X* is countable if and only if $PR_1[X]$ is countable. Therefore, we obtain the following corollary.

Corollary 2.6. Let X be a space. Then, X is countable if and only if $PR_1[X]$ is cellular-Lindelöf.

Question 2.1. If X is cellular-Lindelöf, then are PR[X] and $PR_n[X]$ for some $n \in \mathbb{N}$ cellular-Lindelöf?

Question 2.2. *Is Theorem 2.5 still true if the hyperspace with the Pixley-Roy topology is replaced by the hyperspace equipped with either the Vietoris topology or the Fell topology?*

Theorem 2.7. *Let X be a space. Then, the following statements are equivalent:*

(a) X is countable.

- (b) PR[X] is a strongly star-Hurewicz space.
- (c) PR[X] is a strongly star-Rothberger space.

(d) PR[X] is a strongly star-Menger space.

Proof. (a) \Rightarrow (b). Assume that *X* is countable and

 $\{\mathfrak{U}_n:n\in\omega\}$

is a sequence of open covers of PR[X]. Because *X* is countable, PR[X] is countable. We put

$$PR[X] = \{F_n : n \in \omega\},\$$

and for every $n \in \omega$, we put

$$\mathcal{A}_n = \{F_0, F_1, \ldots, F_n\}.$$

Then,

$$\{\mathcal{A}_n:n\in\omega\}$$

is a sequence of finite subsets of PR[X]. Furthermore, for each $F \in PR[X]$, we have

$$|\{n \in \omega : F \notin \mathsf{St}(\mathcal{A}_n, \mathfrak{U}_n)\}| < \omega.$$

Indeed, let $F \in PR[X]$, then there exists $m \in \omega$ such that

$$F = F_m$$
.

For every $n \ge m$, because $F_m \in A_n$, it implies that

$$F = F_m \in \mathsf{St}(\mathcal{A}_n, \mathfrak{U}_n).$$

DOI: 10.26459/hueuni-jns.v134i1B.7340

Thus,

$$|\{n \in \omega : H \notin \mathtt{St}(\mathcal{A}_n, \mathfrak{U}_n)\}| \leq m < \omega.$$

Therefore, PR[X] is a strongly star-Hurewicz space.

(b) \Rightarrow (d). Let PR[X] be a strongly star-Hurewicz space and

$$\{\mathfrak{U}_n:n\in\omega\}$$

is a sequence of open covers of PR[X]. Since PR[X] is a strongly star-Hurewicz space, there exists a sequence

$$\{\mathcal{A}_n:n\in\omega\}$$

of finite subsets of PR[X] such that for each $F \in PR[X]$, we have

$$|\{n \in \omega : F \notin \mathsf{St}(\mathcal{A}_n, \mathfrak{U}_n)\}| < \omega.$$

Then,

$${\mathtt{St}}(\mathcal{A}_n,\mathfrak{U}_n):n\in\omega$$

is an open cover of PR[X]. Therefore, PR[X] is a strongly star-Menger space.

(a) \Rightarrow (c). Let *X* be countable and

$$\{\mathfrak{U}_n : n \in \omega\}$$

be a sequence of open covers of PR[X]. Since X is countable, PR[X] is countable. Denote

$$\operatorname{PR}[X] = \{F_n : n \in \omega\}.$$

Then,

$${\mathsf{St}}(F_n,\mathfrak{U}_n):n\in\omega$$

is an open cover of PR[X]. In fact, let $E \in PR[X]$, then there exists $n_E \in \omega$ such that

$$E = F_{n_F}$$
.

Since \mathfrak{U}_{n_E} is an open cover of PR[X], there exists \mathcal{U}_{n_E} such that $E \in \mathcal{U}_{n_E}$. Thus,

$$E \in \mathsf{St}(F_{n_E},\mathfrak{U}_{n_E}).$$

Hence, PR[X] is a strongly star-Rothberger space.

(c) \Rightarrow (d). Let PR[X] be a strongly star-Rothberger space and

$$\{\mathfrak{U}_n:n\in\omega\}$$

be a sequence of open covers of PR[X]. Because PR[X] is a strongly star-Rothberger space, there exists a sequence

$$\{F_n:n\in\omega\}$$

of elements of PR[X] such that

$${\mathtt{St}(F_n,\mathfrak{U}_n):n\in\omega}$$

is an open cover of PR[X]. For each $n \in \omega$, we put

$$\mathcal{A}_n = \{F_n\}.$$

Then, $\{A_n : n \in \omega\}$ is a sequence of finite subsets of PR[X] and

$${\mathtt{St}}(\mathcal{A}_n,\mathfrak{U}_n):n\in\omega$$

is an open cover of PR[X]. Therefore, PR[X] is a strongly star-Menger space.

(d) \Rightarrow (a). Let PR[X] be a strongly star-Menger space. For each $n \in \omega$, we put

$$\mathfrak{U}_n = \{ [\{x\}, X] : x \in X \}.$$

Then, { $\mathfrak{U}_n : n \in \omega$ } is a sequence of open covers of PR[X]. Because PR[X] is a strongly star-Menger space, there exists a sequence

$$\{\mathcal{A}_n:n\in\omega\}$$

of finite subsets of PR[X] such that

$$\{\mathtt{St}(\mathcal{A}_n,\mathfrak{U}_n):n\in\omega\}$$

References

- Trieu HTO, Tuyen LQ, Tuyen OV. Starcompact and related spaces on Pixley-Roy hyperspaces. Novi Sad Journal of Mathematics. 2023;
- 2. Li Z. The quasi-Rothberger property of Pixley-Roy hyperspaces. Filomat. 2023;37(8):2531-2538.
- 3. Li Z. The Hurewicz separability of Pixley–Roy hyperspaces. Topology Appl. 2023;324:108-355.

is an open of PR[X]. Now, we will prove that *X* is countable. In fact, let $x \in X$, then

$$\{x\} \in \operatorname{PR}[X].$$

Thus, there exists $n_x \in \omega$ such that

$$\{x\} \in \mathtt{St}(\mathcal{A}_{n_x},\mathfrak{U}_{n_x}).$$

This implies that there exists $U_{n_x} \in \mathfrak{U}_{n_x}$ such that

$$\{x\} \in \mathcal{U}_{n_x} \text{ and } \mathcal{U}_{n_x} \cap \mathcal{A}_{n_x} = \emptyset.$$

Since $U_{n_x} \in \mathfrak{U}_{n_x}$, we have

$$\mathcal{U}_{n_x} = [\{x\}, X],$$

so that

$$[\{x\},X]\cap \mathcal{A}_{n_x}=\emptyset.$$

Hence, there exists $F_{n_x} \in A_{n_x}$ such that

$$F\in [\{x\},X],$$

it implies that $\{x\} \subset F$. On the other hand, we have

$$X = \bigcup_{x \in X} \{x\} \subset \bigcup_{x \in X} F_{n_x}$$
$$\subset \bigcup_{x \in X} \left(\bigcup \mathcal{A}_{n_x}\right)$$
$$\subset \bigcup_{n \in \omega} \left(\bigcup \mathcal{A}_n\right).$$

Because $\bigcup_{n \in \omega} (\bigcup A_n)$ is countable, *X* is countable. \Box

- 4. Mou L, Li P, Lin S. Regular G_{δ} -diagonals and hyperspaces. Topology Appl. 2021;301:107-530.
- 5. Kočinac LDR, Tuyen LQ, Tuyen OV. Some results on Pixley-Roy hyperspaces. J Math. 2022;2022:1-8.
- 6. Tuyen LQ, Tuyen OV. A remark on Pixley-Roy hyperspaces. Novi Sad J Math. 2024;54(1):183-188.
- Tuyen LQ, Tuyen OV. The *σ*-point-finite *cn*-networks (*ck*-networks) of Pixley-Roy hyperspaces. Mat. Vesnik. 2023;75(2):134-137.

- 8. Xuan WF, Song YK. On cellular-Lindelöf spaces. Iranian Math Soc. 2018;44:1485-1491.
- 9. Tkachuk VV, Wilson RG. Cellular-compact spaces and their applications. Acta Math Hung. 2019;159:674-688.
- Kočinac LDR. On Star Selection Principles Theory. Axiom. 2023
- 11. Pixley C, Roy P. Uncompletable Moore spaces. in: Proc. Auburn Topology Conf. 1969;75-85.

- van Douwen E. The Pixley-Roy topology on spaces of subsets. Set-theoretic topology, Academic Press. New York. 1977;111-134.
- 13. Tanaka H. Metrizability of Pixley-Roy hyperspaces. Tsukuba J Math. 1983;7(2):299-315.
- 14. Engelking R. General Topology. Berlin: Heldermann Verlag; 1989.
- 15. Xuan WF, Song YK. A study on cellular-Lindelöf spaces. Topology Appl. 2019;251:1-9.