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1 Introduction 

Let (𝑀, 𝑑) be a metric space, 𝑋  be a nonempty 

closed subset of 𝑀 , and 𝑓: 𝑋 × 𝑋 → ℝ  be a 

bifunction. We consider the following equilibrium 

problem (in short, EP): Find 𝑥∗ ∈ 𝑋 such that 

     𝑓(𝑥∗, 𝑦) ≥ 0  for all 𝑦 ∈ 𝑋.                                   (1) 

We denote the solution set of EP (1)    

with 𝑋∗. 

The equilibrium problem was introduced 

by Blum and Oettli [8]. It is a general 

mathematical model which contains several 

important problems as special cases, such as 

optimisation problems, variational inequality 

problems, saddle point problems, 

complementarity problems, fixed point problems, 

Nash equilibrium problems in noncooperative 

games, and others (see, e.g., [7, 8, 14] and 

references therein). Since EP has applications in 

numerous areas of science, such as economics, 

transportation, networks, image reconstruction, 

and elasticity, it has been studied extensively. 

Two basic and important issues for EP are the 

existence of solutions and solution methods. 

There have been a large number of papers dealing 

with the solution existence and algorithms for 

solving equilibrium problems in the literature (see 

[5–8, 10–12, 21, 23] and references therein). 

Moudafi [17] introduced the notion of -

conditioning for equilibrium problems. This 

notion generalises and unifies several known 

notions and conditions in the literature, 

concerning optimisation problems, such as the 

notion of conditioning for functions [15], the 

notion of sharp minimum [20, 2], the notion of 

weak sharp minima [9, 13, 16], and conditions for 

non-expansive mappings [22]. Note that the 

above-mentioned notions and conditions play a 

crucial role in the treatment of error bounds, 

sensitivity analysis, as well as (finite) convergence 

analysis for a wide range of algorithms for solving 

optimisation problems, variational inequality 

problems, and fixed point problems (see, e.g., [4, 

16–19] and references therein). It is worth 

mentioning that Moudafi [17] only gave the 

definition of -conditioning and an application to 

the finite convergence of the proximal method for 

solving equilibrium problems. Some 
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characterisations and applications of 1-

conditioning to establish finite convergence of 

some algorithms for solving equilibrium problems 

in Hilbert spaces were presented in [18]. 

The main objective of this paper is to study 

the existence and linear conditioning for solutions 

of equilibrium problems in metric spaces. We first 

present an existence result for solutions of 

equilibrium problems in metric spaces, improving 

a result by Blum and Oettli [8]. We then use this 

result to establish some characterisations for 

linearly conditioned solutions of equilibrium 

problems. These results improve and extend the 

analogous results in [18] to the setting of metric 

spaces.   

The remainder of this section is devoted to 

the presentation of some definitions and basic 

results which will be used in the following 

section. 

Let 𝐾  be a subset of 𝑀  and 𝑥 ∈ 𝑀 . The 

distance from 𝑥 to 𝐾 is defined by 

𝑑(𝑥, 𝐾) = inf
𝑦∈𝐾

𝑑(𝑥, 𝑦). 

The metric projection from 𝑥  to 𝐾  is 

defined by 

𝑃𝐾(𝑥) = {𝑦 ∈ 𝑀: 𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝑀)}. 

In general, 𝑃𝐾  is a set-valued mapping 

from 𝑀 to 𝐾. When 𝑃𝐾  is single-valued, the set 

𝐾 is called a Chebyshev set. For example, if 𝑀 is 

a Hadamard manifold, and 𝑑 is the Riemannian 

distance, then every closed, geodesically convex 

set is a Chebyshev set (see, e.g., [23]).  

Definition 1 Let 𝜑: 𝑀 → ℝ be a function and 𝑥̂ ∈ 𝑀. 

We say that 𝜑 is lower semicontinuous at 𝑥̂ if  

𝑓(𝑥̂) ≤ liminf
𝑥→𝑥

𝑓(𝑥).  

If 𝜑 is lower semicontinuous at every 𝑥̂ ∈ 𝑀, we say 

that 𝜑 is lower semicontinuous.  

Definition 2. Let 𝜑: 𝑀 → ℝ be a function and 𝑥̂ ∈

𝑀. We say that 𝜑 is 0-lower semicontinuous at 𝑥̂ if  

liminf
𝑥→𝑥

𝑓(𝑥) ≤ 0 ⟹   𝑓(𝑥̂) ≤ 0. 

If 𝜑  is 0-lower semicontinuous at every 𝑥̂ ∈ 𝑀 , we 

say that 𝜑 is 0-lower semicontinuous. 

Remark 1 If φ is lower semicontinuous at a point 

𝑥 ∈ 𝑀 , then it is 0-lower semicontinuous at 𝑥. 

However, the converse is not true.  

Example 1 Let 𝜑: ℝ → ℝ be defined by 

𝜑(𝑥) =  {
0               𝑖𝑓  𝑥 ≤ 0,

𝑥2 − 1        𝑖𝑓  𝑥 > 0.
 

One can check that φ is 0-lower semicontinuous 

at 0, but it is not lower semicontinuous at 0. 

Definition 3 A bifunction 𝑓: 𝑋 × 𝑋 →  ℝ is said to be 

(a) monotone on 𝑋 if, for any 𝑥, 𝑦 ∈ 𝑋, 

𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥) ≤ 0; 

(b) pseudomonotone on 𝑋 if, for any 𝑥, 𝑦 ∈ 𝑋, 

𝑓(𝑥, 𝑦) ≥ 0 ⟹ 𝑓(𝑦, 𝑥) ≤ 0. 

From the definition, we see that if 𝑓 is 

monotone, then it is pseudomonotone. However, 

the converse is not true even in Hilbert spaces 

(see, e.g., [12]).  

The following result was stated in [18], where the 

authors studied equilibrium problems in Hilbert 

spaces. We present the proof for the reader’s 

convenience.  

Lemma 1 If 𝑓: 𝑋 × 𝑋 → ℝ  is pseudomonotone, 

then 𝑓(𝑥∗, 𝑦∗) = 0 for all 𝑥∗, 𝑦∗ ∈ 𝑋∗. 

Proof. Since 𝑦∗ ∈ 𝑋∗, one has 𝑓(𝑦∗, 𝑥∗) ≥ 0. Then, 

by the pseudomonotonicity of 𝑓,  

𝑓(𝑥∗, 𝑦∗) ≤ 0. 

Moreover, since 𝑥∗ ∈ 𝑋∗, one also has 

𝑓(𝑥∗, 𝑦∗) ≥ 0. 

It follows from the last two inequalities that 

𝑓(𝑥∗, 𝑦∗) = 0. This ends the proof.              ∎ 
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2 Main results 

2.1 Existence of solutions 

In this subsection, we present an existence 

theorem for solutions of equilibrium problems. 

The result slightly refines a result by Blum and 

Oettli [8, Theorem 3].  

Theorem 1 Let 𝑋 be a nonempty closed subset of 𝑀 

and 𝑓: 𝑋 ×  𝑋 →  ℝ satisfy the following conditions: 

(i) 𝑓  is 0-lower semicontinuous in the second 

argument; 

(ii) 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑧) + 𝑓(𝑧, 𝑦)  ∀𝑥, 𝑦, 𝑧 ∈ 𝑋; 

(iii) there exists 𝑥0 ∈ 𝑋 such that 

inf
𝑦∈𝑋

𝑓(𝑥0, 𝑦) > −∞; 

(iv) there exists 𝛾 > 0 such that for every 𝑥 ∈ 𝑋 with 

inf
𝑦∈𝑋

𝑓(𝑥, 𝑦) < 0, there is some 𝑦 ∈ 𝑋, 𝑦 ≠ 𝑥 satisfying 

𝑓(𝑥, 𝑦) + 𝛾𝑑(𝑥, 𝑦) ≤ 0. 

Then, there exists 𝑥∗ ∈ 𝑋  such that 𝑓(𝑥∗, 𝑦) ≥ 0 for 

all 𝑦 ∈ 𝑋 , i.e., the solution set 𝑋∗  of EP(1) is 

nonempty. 

Proof. The proof is a slight modification of the 

proof of Theorem 3 in [8]. We present it here for 

the reader’s convenience.  

We will construct, by induction, a sequence 

{𝑥𝑛} ⊂ 𝑋 starting from 𝑥0 such that for all 𝑛, 

𝑥𝑛+1 ∈ 𝑆𝑛 , 𝑓(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝛼𝑛 +
1

2𝑛
,                (2) 

and  

  ∅ ≠ 𝑆𝑛+1 ⊂ 𝑆𝑛                                                         (3) 

where  

𝑆𝑛 = {𝑦 ∈ 𝑋: 𝑓(𝑥𝑛 , 𝑦) + 𝛾𝑑(𝑥𝑛 , 𝑦) ≤ 0}     

and 

𝛼𝑛 = inf
𝑦∈𝑆𝑛

𝑓(𝑥𝑛 , 𝑦) >  −∞.                                       (4) 

Since 𝑓(𝑥, 𝑥) = 0  for all 𝑥 ∈ 𝑋 , we have 

𝑥0 ∈ 𝑆0, i.e., 𝑆0 ≠ ∅. Moreover, by (iii), 

𝛼0 = inf
𝑦∈𝑆0

𝑓(𝑥0, 𝑦) ≥ inf
𝑦∈𝑋

𝑓(𝑥0, 𝑦) > −∞. 

Then, there exists 𝑥1 ∈ 𝑆0 such that 

𝑓(𝑥0, 𝑥1) ≤ 𝛼0 + 1. 

By (ii) and the fact that 𝑥1 ∈ 𝑆0, we have, 

for each 𝑦 ∈ 𝑆1,  

𝑓(𝑥0, 𝑦) + 𝛾𝑑(𝑥0, 𝑦) ≤ 𝑓(𝑥0, 𝑥1) + 𝑓(𝑥1, 𝑦) 

                 + 𝛾𝑑(𝑥0, 𝑥1) + 𝛾𝑑(𝑥1, 𝑦) ≤ 0.  

This implies that 𝑦 ∈ 𝑆0 . So, 𝑆1 ⊂ 𝑆0 . Of 

course, 𝑆1 ≠ ∅ since 𝑥1 ∈ 𝑆1 . Hence, (2), (3) and 

(4) hold for 𝑛 = 0.  

Assume now that, for some 𝑘 ≥ 0, we have 

constructed 𝑥0, 𝑥1, ⋯ , 𝑥𝑘 , 𝑥𝑘+1 such that (2), (3), 

and (4) hold for 𝑛 = 0,1, ⋯ , 𝑘 . By (ii) and the 

inductive hypothesis, we have 

𝛼𝑛+1 = inf
𝑦∈𝑆𝑛+1

𝑓(𝑥𝑛+1, 𝑦)         

≥ inf
𝑦∈𝑆𝑛+1

[ 𝑓(𝑥𝑛 , 𝑦) − 𝑓(𝑥𝑛 , 𝑥𝑛+1)]  

≥ inf
𝑦∈𝑆𝑛

[ 𝑓(𝑥𝑛, 𝑦) − 𝑓(𝑥𝑛 , 𝑥𝑛+1)]

= 𝛼𝑛 − 𝑓(𝑥𝑛 , 𝑥𝑛+1) ≥ −
1

2𝑛
. 

  This implies that 𝛼𝑛+1 > −∞. This leads to 

the existence of an element 𝑥𝑛+2 ∈ 𝑆𝑛+1 such that 

𝑓(𝑥𝑛+1, 𝑥𝑛+2) ≤ 𝛼𝑛+1 +
1

2𝑛+1
. 

It is easy to see that 𝑆𝑛+2 ⊂ 𝑆𝑛+1  and 

𝑥𝑛+2 ∈ 𝑆𝑛+2 . Therefore, by induction, the 

construction of the sequence {𝑥𝑛} satisfying (2), 

(3) and (4) is complete. 

We see that for each 𝑛, the set 𝑆𝑛 is closed. 

Indeed, assume that {𝑦𝑘} ⊂ 𝑆𝑛 converges to some 

𝑦 ∈ 𝑋. Since 𝑦𝑘 ∈ 𝑆𝑛, 

𝑓(𝑥𝑛 , 𝑦𝑘) + 𝛾𝑑(𝑥𝑛 , 𝑦𝑘) ≤ 0. 

This implies that 

liminf
𝑘→∞

[𝑓(𝑥𝑛 , 𝑦𝑘) + 𝛾𝑑(𝑥𝑛 , 𝑦𝑘)] ≤ 0. 

By (i), we get 𝑓(𝑥𝑛 , 𝑦) + 𝛾𝑑(𝑥𝑛, 𝑦) ≤ 0. This 

means that 𝑦 ∈ 𝑆𝑛. So, 𝑆𝑛 is closed.  

Now, for each 𝑛 ≥ 1, if 𝑦 ∈ 𝑆𝑛, then  
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𝑑(𝑥𝑛, 𝑦) ≤ −
1

𝛾
 𝑓(𝑥𝑛 , 𝑦) ≤ −

1

𝛾
 𝛼𝑛 ≤

1

𝛾
.

1

2𝑛−1
. 

This implies that the diameter of the sets 𝑆𝑛 

tends to zero. Moreover, 𝑥𝑘 ∈ 𝑆𝑘 ⊂ 𝑆𝑛 for all 𝑘 ≥

𝑛. Thus, 𝑑(𝑥𝑛, 𝑥𝑘) ≤
1

𝛾
.

1

2𝑛−1 . 

This means that {𝑥𝑛} is a Cauchy sequence 

in 𝑋. Since 𝑋 is closed, there exists 𝑥∗ ∈ 𝑋 such 

that 

lim
𝑛→∞

𝑥𝑛 = 𝑥∗. 

It is evident that 

{𝑥∗} = ⋂ 𝑆𝑛

∞

𝑛=0

.                                                               (5) 

We claim that 𝑓(𝑥∗, 𝑦) ≥ 0 for all 𝑦 ∈ 𝑋. If 

this is not true, then, by (iv), there exists 𝑦∗ ∈ 𝑋 

with 𝑦∗ ≠ 𝑥∗ such that 

𝑓(𝑥∗, 𝑦∗) + 𝛾𝑑(𝑥∗, 𝑦∗) ≤ 0.                                       (6) 

By (5), 𝑓(𝑥𝑛 , 𝑥∗) + 𝛾𝑑(𝑥𝑛 , 𝑥∗) ≤ 0 for all 𝑛 . 

Using (ii), (6) one has 𝑓(𝑥𝑛 , 𝑦∗) + 𝛾𝑑(𝑥𝑛 , 𝑦∗) ≤ 0. 

This implies that 𝑦∗ ∈ ⋂ 𝑆𝑛
∞
𝑛=0 . This contradicts 

(5). The proof is complete.                      ∎ 

Remark 2   Under the assumptions of Theorem 1, 

𝑥∗ ∈ 𝑋∗ if and only if 

𝑓(𝑥∗, 𝑦) + 𝛾𝑑(𝑥∗, 𝑦) > 0  ∀𝑦 ∈ 𝑋, 𝑦 ≠ 𝑥.              (7) 

Indeed, if 𝑥∗ ∈ 𝑋∗, then 𝑓(𝑥∗, 𝑦) > 0 for all 

𝑦 ∈ 𝑋. This implies that (7) holds. Suppose now 

that (7) holds. We show that 𝑥∗ ∈ 𝑋∗. If not, there 

is some 𝑢 ∈ 𝑋  such that 𝑓(𝑥∗, 𝑢) < 0 . Then, by 

(iv), there exists some 𝑦 ∈ 𝑋, 𝑦 ≠ 𝑥 such that 

𝑓(𝑥, 𝑦) + 𝛾𝑑(𝑥, 𝑦) ≤ 0. 

This contradicts (7). Thus, 𝑥∗ ∈ 𝑋∗. 

Remark 3 Theorem 1 improves [8, Theorem 3] in 

the sense that we replace the lower semicontinuity 

of 𝑓 by the 0-lower semicontinuity. 

2.2 Linear conditioning of solution sets 

This subsection is devoted to the study of some 

sufficient conditions for the linear conditioning 

property of solution sets of equilibrium problems 

in metric spaces. Throughout this subsection, we 

always assume that the solution set 𝑋∗  is a 

Chebyshev set. We refer the reader to [23] for 

some sufficient conditions under which 𝑋∗  is 

closed, geodesically convex (i.e., 𝑋∗  is a 

Chebyshev set) in case 𝑀  is a Hadamard 

manifold.  

Definition 4 [17] The equilibrium bifunction 𝑓  is 

said to be 𝜃-conditioned with modulus 𝛾 if there exist 

two positive constants 𝜃 and 𝛾 such that  

−𝑓(𝑥, 𝑃𝑋∗(𝑥)) ≥ 𝛾[𝑑(𝑥, 𝑋∗)]𝜃  ∀𝑥 ∈ 𝑋.                 (8) 

We say that 𝑓 is linearly conditioned with modulus 𝛾 

if it is 1-conditioned with modulus 𝛾. 

Remark 4 We also say that the solution set 𝑋∗ is 

θ-conditioned with modulus 𝛾 if (8) holds. When 

θ = 1, the solution set 𝑋∗  is said to be linearly 

conditioned with modulus 𝛾. 

We now present some sufficient conditions 

for the linear conditioning of the solution set 𝑋∗ 

of EP (1). The following theorem extends [18, 

Proposition 2] to the setting of metric spaces with 

a more detailed proof. 

Theorem 2 Suppose the bifunction 𝑓: 𝑋 × 𝑋 →  ℝ is 

pseudomonotone on 𝑋  and satisfies the assumptions 

(i)–(iv) in Theorem 1. Then, the solution set 𝑋∗  of 

EP(1) is linearly conditioned with modulus 𝛾. 

Proof. By Theorem 1, the solution set 𝑋∗ of EP (1) 

is nonempty. For each 𝑥 ∈ 𝑋, set 

𝑆(𝑥) = {𝑦 ∈ 𝑋: 𝑓(𝑥, 𝑦) + 𝛾𝑑(𝑥, 𝑦) ≤ 0}. 

We have that 𝑆(𝑥) is nonempty since 𝑥 ∈

𝑆(𝑥).  Moreover, since 𝑓  is 0-lower 

semicontinuous on 𝑋 , 𝑆(𝑥)  is a closed set for 

each 𝑥 ∈ 𝑋. Using (ii) and (iii), we have 
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inf
𝑦∈𝑆(𝑥)

𝑓(𝑥, 𝑦) ≥  inf
𝑦∈𝑆(𝑥)

[𝑓(𝑥0, 𝑦) − 𝑓(𝑥0, 𝑥)]      

≥  inf
𝑦∈𝑋

[𝑓(𝑥0, 𝑦) − 𝑓(𝑥0, 𝑥)] >  −∞. 

Now, by applying Theorem 1 with 𝑋 being 

replaced by 𝑆(𝑥), there exists 𝑢∗ ∈ 𝑆(𝑥) such that 

𝑓(𝑢∗, 𝑦) ≥ 0  for all 𝑦 ∈ 𝑆(𝑥) . By Remark 2, we 

have 

𝑓(𝑢∗, 𝑦) + 𝛾𝑑(𝑢∗, 𝑦) > 0, ∀𝑦 ∈ 𝑆(𝑥), 𝑦 ≠ 𝑢∗.      (9) 

We need to show that 

𝑓(𝑢∗, 𝑦) + 𝛾𝑑(𝑢∗, 𝑦) > 0, ∀𝑦 ∈ 𝑋, 𝑦 ≠ 𝑢∗          (10) 

If (10) does not hold, then there exists 𝑢 ∈

𝑋, 𝑢 ≠ 𝑢∗ such that 

𝑓(𝑢∗, 𝑢) + 𝛾𝑑(𝑢∗, 𝑢) ≤ 0.                                       (11) 

This, together with the fact 𝑢∗ ∈ 𝑆(𝑥) , 

implies that 

𝑓(𝑥, 𝑢) + 𝛾𝑑(𝑥, 𝑢) ≤ 𝑓(𝑥, 𝑢∗) + 𝛾𝑑(𝑥, 𝑢∗)         

         + 𝑓(𝑢∗, 𝑢) + 𝛾𝑑(𝑢∗, 𝑢) 

≤ 0.        

Hence, 𝑢 ∈ 𝑆(𝑥) . This is a contradiction 

since (9) with 𝑦 = 𝑢  and (11) do not hold 

simultaneously. Thus, (10) holds, and by Remark 

2, 𝑢∗ ∈ 𝑋∗. This implies that 𝑆(𝑥) ∩ 𝑋∗ ≠ ∅.  

Now, for each 𝑥 ∈ 𝑋\𝑋∗ , let 𝑧 ∈ 𝑆(𝑥) ∩ 𝑋∗ 

(𝑧 depends on 𝑥). We have 

𝑓(𝑥, 𝑧) + 𝛾𝑑(𝑥, 𝑋∗) ≤ 𝑓(𝑥, 𝑧) + 𝛾𝑑(𝑥, 𝑧) ≤ 0. 

This implies that 

𝛾𝑑(𝑥, 𝑋∗) ≤ −𝑓(𝑥, 𝑧). 

This, together with (ii) and Lemma 1, leads 

to 

  𝛾𝑑(𝑥, 𝑋∗) ≤ −𝑓(𝑥, 𝑧)

≤ −𝑓(𝑥, 𝑃𝑋∗(𝑥)) + 𝑓(𝑧, 𝑃𝑋∗(𝑥))   

=  −𝑓(𝑥, 𝑃𝑋∗(𝑥)). 

This implies that 𝑋∗ is linearly conditioned 

with modulus 𝛾.                               ∎ 

The following theorem improves and 

generalises [18, Proposition 3] by extending the 

result from Hilbert spaces to metric spaces, and 

by replacing the assumption of lower 

semicontinuity of φ with the weaker condition of 

0-lower semicontinuity. 

Theorem 3 Let  𝑓: 𝑋 × 𝑋 → ℝ  be a monotone 

bifunction. Assume that there exists a function 𝜑: 𝑋 →

ℝ and a constant 𝛾 > 0 such that 

(a) 𝜑 is 0-lower semicontinuous and is bounded below; 

(b) 𝑓(𝑥, 𝑦) ≥ 𝜑(𝑦) − 𝜑(𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 

(c) for each 𝑥̂ ∈ 𝑋 with inf
𝑥∈𝑋

𝜑(𝑥) < 𝜑(𝑥̂), there exists 

𝑧 ∈ 𝑋 such that 𝑧 ≠  𝑥̂ and 

𝑓(𝑥̂, 𝑧) + 𝛾𝑑(𝑥̂, 𝑧) ≤ 0. 

Then, 𝑓 is linearly conditioned with modulus 𝛾. 

Proof. Denote by 𝐸  the set of minimisers of φ. 

Then, by condition (b), 𝐸 ⊂ 𝑋∗. For reach 𝑥 ∈ 𝑋, 

set  

𝑆(𝑥) = {𝑦 ∈ 𝑋: 𝜑(𝑦) − 𝜑(𝑥) + 𝛾𝑑(𝑦, 𝑥) ≤ 0}. 

Then, 𝑆(𝑥)  is nonempty since 𝑥 ∈ 𝑆(𝑥) . 

Moreover, since φ is 0-lower semicontinuous, the 

set 𝑆(𝑥) is closed. Thus, (𝑆(𝑥), 𝑑) is a complete 

metric space. Now, by applying Theorem 1 and 

using Remark 2 for 𝑓(𝑥, 𝑦) = 𝜑(𝑦) − 𝜑(𝑥), there 

exists 𝑥∗ ∈ 𝑆(𝑥) such that  

𝜑(𝑦) − 𝜑(𝑥∗) + 𝛾𝑑(𝑥∗, 𝑦) > 0, ∀𝑦 ∈ 𝑆(𝑥), 𝑦 ≠ 𝑥.   

As in the proof of Theorem 2, we can show that 

𝜑(𝑦) − 𝜑(𝑥∗) + 𝛾𝑑(𝑥∗, 𝑦) > 0, ∀𝑦 ∈ 𝑋, 𝑦 ≠ 𝑥.   (12)  

  We claim that 𝑥∗ ∈ 𝐸 . Indeed, if 𝑥∗ ∉ 𝐸 , 

then by (c), there exists 𝑧 ∈ 𝑋 with 𝑧 ≠ 𝑥∗ such 

that 

𝑓(𝑥∗, 𝑧) + 𝛾𝑑(𝑥∗, 𝑧) ≤ 0.  

This, together with (b), implies that 

𝜑(𝑧) − 𝜑(𝑥∗) + 𝛾𝑑(𝑥∗, 𝑧) ≤ 0. 

This contradicts (12). So, 𝑥∗ ∈ 𝐸 ⊂ 𝑋  and 

hence 𝑥∗ ∈ 𝑆(𝑥) ∩ 𝑋∗ . This means that for each 

𝑥 ∈ 𝑋, there exists 𝑥∗ ∈ 𝑋∗ (depending on 𝑥) such 

that 

𝛾𝑑(𝑥, 𝑥∗) ≤ 𝜑(𝑥) − 𝜑(𝑥∗). 
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Using (ii), Lemma 1 and the monotonicity of 𝑓, 

one has for each 𝑥 ∈ 𝑋 that 

𝛾𝑑(𝑥, 𝑋∗) ≤ 𝛾𝑑(𝑥, 𝑥∗) ≤ 𝜑(𝑥) − 𝜑(𝑥∗)             

= 𝜑(𝑥) − 𝜑(𝑃𝑋∗(𝑥))    

+  𝜑(𝑃𝑋∗(𝑥))     − 𝜑(𝑥∗)   

≤ 𝑓(𝑃𝑋∗(𝑥), 𝑥) + 𝑓(𝑥∗, 𝑃𝑋∗(𝑥))

≤  − 𝑓(𝑥, 𝑃𝑋∗(𝑥)).  

Here, according to Lemma 1, 

𝑓(𝑥∗, 𝑃𝑋∗(𝑥)) = 0  as 𝑥∗, 𝑃𝑋∗(𝑥) ∈ 𝑋∗ . The latter 

inequality means that 𝑋∗ is linearly conditioned 

with modulus 𝛾.                               ∎ 
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