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Abstract. In this paper, we provide sufficient conditions for the existence and linear conditioning of
equilibrium problems in metric spaces. Our results improve and generalise some well-known results in

the literature.
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1 Introduction

Let (M,d) be a metric space, X be a nonempty
closed subset of M, and f: XXX —>R be a
bifunction. We consider the following equilibrium
problem (in short, EP): Find x* € X such that

f(x*,y) =0 forally € X. @))
We denote the solution set of EP (1)
with X™.

The equilibrium problem was introduced
by Blum and Oettli [8]. It is

mathematical model which contains several

a general

important problems as special cases, such as
optimisation problems,
saddle

complementarity problems, fixed point problems,

variational inequality

problems, point problems,
Nash equilibrium problems in noncooperative
games, and others (see, e.g., [7, 8 14] and
references therein). Since EP has applications in
numerous areas of science, such as economics,
transportation, networks, image reconstruction,
and elasticity, it has been studied extensively.
Two basic and important issues for EP are the

existence of solutions and solution methods.
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There have been a large number of papers dealing
with the solution existence and algorithms for
solving equilibrium problems in the literature (see
[5-8, 10-12, 21, 23] and references therein).

Moudafi [17] introduced the notion of 6-
conditioning for equilibrium problems. This
notion generalises and unifies several known
notions and conditions in the literature,
concerning optimisation problems, such as the
notion of conditioning for functions [15], the
notion of sharp minimum [20, 2], the notion of
weak sharp minima [9, 13, 16], and conditions for
non-expansive mappings [22]. Note that the
above-mentioned notions and conditions play a
crucial role in the treatment of error bounds,
sensitivity analysis, as well as (finite) convergence
analysis for a wide range of algorithms for solving
optimisation problems, variational inequality
problems, and fixed point problems (see, e.g., [4,
16-19] and references therein). It is worth
mentioning that Moudafi [17] only gave the
definition of 8-conditioning and an application to
the finite convergence of the proximal method for
solving Some

equilibrium problems.
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characterisations and applications of 1-
conditioning to establish finite convergence of
some algorithms for solving equilibrium problems

in Hilbert spaces were presented in [18].

The main objective of this paper is to study
the existence and linear conditioning for solutions
of equilibrium problems in metric spaces. We first
present an existence result for solutions of
equilibrium problems in metric spaces, improving
a result by Blum and Oettli [8]. We then use this
result to establish some characterisations for
linearly conditioned solutions of equilibrium
problems. These results improve and extend the
analogous results in [18] to the setting of metric

spaces.

The remainder of this section is devoted to
the presentation of some definitions and basic
results which will be used in the following

section.

Let K be a subset of M and x € M. The

distance from x to K is defined by

d(x,K) = J11r611f(d(x,y).

The metric projection from x to K is
defined by

Pe(x) ={y € M:d(x,y) = d(x,M)}.

In general, Py is a set-valued mapping
from M to K. When Py is single-valued, the set
K is called a Chebyshev set. For example, if M is
a Hadamard manifold, and d is the Riemannian
distance, then every closed, geodesically convex
set is a Chebyshev set (see, e.g., [23]).

Definition 1 Let ¢: M — R be a function and £ € M.
We say that ¢ is lower semicontinuous at X if

f(®) < liminf £ (o).

If @ is lower semicontinuous at every X € M, we say

that @ is lower semicontinuous.

Definition 2. Let ¢: M — R be a function and X €
M. We say that ¢ is 0-lower semicontinuous at £ if

92

li)r(rl)i)glff(x) <0 = f(@®<0.

If ¢ is O-lower semicontinuous at every X € M, we

say that ¢ is O-lower semicontinuous.

Remark 1If ¢ is lower semicontinuous at a point
x € M, then it is 0-lower semicontinuous at x.
However, the converse is not true.

Example 1 Let ¢:R — R be defined by

()_{O if x<0,
PH=2—1 if x>0,

One can check that ¢ is 0-lower semicontinuous

at 0, but it is not lower semicontinuous at 0.
Definition 3 A bifunction f:X X X — R is said to be
(a) monotone on X if, for any x,y € X,

f,y)+f,x) <0;

(b) pseudomonotone on X if, for any x,y € X,

flx,y) =0 = f(y,x) <0.

From the definition, we see that if fis
monotone, then it is pseudomonotone. However,
the converse is not true even in Hilbert spaces
(see, e.g., [12]).

The following result was stated in [18], where the
authors studied equilibrium problems in Hilbert
spaces. We present the proof for the reader’s

convenience.

Lemma 1 If f:X XX > R is pseudomonotone,
then f(x*,y*) =0 forall x*,y* € X".

Proof. Since y* € X", one has f(y*,x*) = 0. Then,
by the pseudomonotonicity of f,

fxy) <o0.

Moreover, since x* € X*, one also has
f(x"y*) = 0.

It follows from the last two inequalities that
f(x*,y*) = 0. This ends the proof. ]
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2 Main results

2.1 Existence of solutions

In this subsection, we present an existence
theorem for solutions of equilibrium problems.
The result slightly refines a result by Blum and
Oettli [8, Theorem 3].

Theorem 1 Let X be a nonempty closed subset of M
and f:X X X — R satisfy the following conditions:

(i) f is O-lower semicontinuous in the second

argument;

(i) f(e,y) < f(x,2) +f(zy) Vx,y,2€X;
(iii) there exists xy € X such that

inf f (x0,y) > —o0;

(iv) there exists y > 0 such that for every x € X with
irel)f(f(x,y) < 0, thereis some y € X,y # x satisfying
y

flx,y) +yd(x,y) <0.
Then, there exists x* € X such that f(x*,y) =0 for
all ye€ X, ie, the solution set X* of EP(1) is

nonempty.

Proof. The proof is a slight modification of the
proof of Theorem 3 in [8]. We present it here for

the reader’s convenience.

We will construct, by induction, a sequence

{x,} € X starting from x, such that for all n,

St €50 fGnt) Santz @)
and

@ # Spi1 © Sy 3)
where
Sn={y € X: f(xn,y) + yd(xn, ) < 0}
and
an = yigsfnf(xn,y) > —oo. 4

Since f(x,x) =0 for all x € X, we have

Xg € Sp, i.e., Sy # @. Moreover, by (iii),

DOI: 10.26459/hueunijns.v134i1D.7670

ap = ylgsf0 f(xo,y) 2 yirel)f(f(xo,y) > —co,

Then, there exists x; € S, such that
flxg,x) < g+ 1.

By (ii) and the fact that x; € S;, we have,

for each y € S,

f(x0,¥) +vd(x0,y) < f(x0,%x1) + f(x1,¥)
+ yd(xg, x1) +yd(x,y) < 0.

This implies that y € S,. So, S; € S§,. Of
course, S; # @ since x; € S;. Hence, (2), (3) and
(4) hold for n = 0.

Assume now that, for some k = 0, we have
constructed xg, xq,+, X, Xg4q1 such that (2), (3),
and (4) hold for n=0,1,-+,k. By (ii) and the
inductive hypothesis, we have
ny1 = inf f(xn41,¥)

YESn+1
= inf [f(xn' Y) - f(xn: xn+1)]
Y€Sn+1
= inf [f(xn' y) - f(xn'xn+1)]
YESn

=ay, — f(xp Xn41) = _Z_n-

This implies that a;,,; > —oo. This leads to

the existence of an element x,,,, € S,,; such that

f(xn+1» xn+2) Spyr t W

It is easy to see that S,., € S,;; and

Xn+2 € Snaz Therefore, by induction, the

construction of the sequence {x,} satisfying (2),
(3) and (4) is complete.

We see that for each n, the set §,, is closed.
Indeed, assume that {y,} c S,, converges to some

y € X. Since y, € S,

f(xn' yk) + Vd(xn' yk) <0.

This implies that
li}gglf[f(xn,yk) + yd (%, yi)] < 0.

By (i), we get f(x,,y) +yd(x,,y) <0. This
means that y € S,,. So, §,, is closed.

Now, foreach n > 1, if y € §,,, then
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1 1

1 1
d(xp,y) < - flxn,y) < - a, < T

This implies that the diameter of the sets S,

tends to zero. Moreover, x; € S, € S,, for all k >

1 1
n. Thus, d(x,, x;) < P

This means that {x,} is a Cauchy sequence
in X. Since X is closed, there exists x* € X such
that

lim x, = x".

n-oo

It is evident that

{x'}= ﬁSn- (5)
n=0

We claim that f(x*,y) =0 for all y € X. If
this is not true, then, by (iv), there exists y* € X
with y* # x* such that

fGy™) +yd(x’, y) < 0. (6)

By (5), f(xy x™) +yd(x,,x*) <0 for all n.
Using (ii), (6) one has f(x,,¥") +yd(x,,y") < 0.
This implies that y* € Ny~,S,. This contradicts
(5). The proof is complete. [ |

Remark 2 Under the assumptions of Theorem 1,
x* € X* if and only if
fx*y) +yd(x*,y) >0 Vy €X,y # x. (7

Indeed, if x* € X*, then f(x*,y) > 0 for all
y € X. This implies that (7) holds. Suppose now
that (7) holds. We show that x* € X*. If not, there
is some u € X such that f(x*,u) <0. Then, by
(iv), there exists some y € X,y # x such that

fley) +yd(x,y) <0.
This contradicts (7). Thus, x* € X*.

Remark 3 Theorem 1 improves [8, Theorem 3] in
the sense that we replace the lower semicontinuity

of f by the 0-lower semicontinuity.
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2.2 Linear conditioning of solution sets

This subsection is devoted to the study of some
sufficient conditions for the linear conditioning
property of solution sets of equilibrium problems
in metric spaces. Throughout this subsection, we
always assume that the solution set X* is a
Chebyshev set. We refer the reader to [23] for
some sufficient conditions under which X~ is
closed, geodesically convex (ie, X* is a
Chebyshev set) in case M is a Hadamard

manifold.

Definition 4 [17] The equilibrium bifunction f is
said to be B-conditioned with modulus y if there exist

two positive constants 6 and y such that
—f(x, PX*(x)) > y[d(x,X)]° vx € X. (8)

We say that f is linearly conditioned with modulus y
if it is 1-conditioned with modulus y.

Remark 4 We also say that the solution set X* is
0-conditioned with modulus y if (8) holds. When
8 =1, the solution set X* is said to be linearly

conditioned with modulus y.

We now present some sufficient conditions
for the linear conditioning of the solution set X*
of EP (1). The following theorem extends [18,
Proposition 2] to the setting of metric spaces with

a more detailed proof.

Theorem 2 Suppose the bifunction f:X XX — R is
pseudomonotone on X and satisfies the assumptions
(i)—(iv) in Theorem 1. Then, the solution set X* of
EP(1) is linearly conditioned with modulus y.

Proof. By Theorem 1, the solution set X* of EP (1)

is nonempty. For each x € X, set
Sx)={yeX:f(x,y) +yd(x,y) <0}

We have that S(x) is nonempty since x €

S(x). Moreover, since f is  O-lower
semicontinuous on X, S(x) is a closed set for

each x € X. Using (ii) and (iii), we have
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inf)f(x,y) > inf [f(xo,y) — f(xg,x)]
YES(x)

yES(x
> inf[f(x0,y) — f(xg,x)] > —o0.
yEX

Now, by applying Theorem 1 with X being
replaced by S(x), there exists u* € S(x) such that
f",y) =0 for all y € S(x). By Remark 2, we
have
f@,y) +yd@’,y) >0,vy € S(x),y #u". (9)
We need to show that
fw,y) +ydw,y) >0,vyeX,y+u (10)

If (10) does not hold, then there exists u €
X,u # u* such that
fw,uw) +yd*,u) <0. (11

This, together with the fact u* € S(x),
implies that

flo,w) +yd(x,uw) < fle,u*) +yd(x,u*)
+ f(u',u) +ydw*,u)

<0.
Hence, u € S(x). This is a contradiction
since (9) with y=u and (11) do not hold

simultaneously. Thus, (10) holds, and by Remark
2, u* € X*. This implies that S(x) N X* # @.

Now, for each x € X\X*, let zeS(x) N X"
(z depends on x). We have
fx,z) +yd(x, X*) < f(x,z) +yd(x,z) < 0.

This implies that
yd(x,X") < —f(x,2).

This, together with (ii) and Lemma 1, leads
to

yd(x,X*) < —f(x,Z)

< —f (% Px-(0) + f(z Py ()
= —f(x, PX*(x)).

This implies that X* is linearly conditioned
with modulus y. [

The following theorem improves and
generalises [18, Proposition 3] by extending the

result from Hilbert spaces to metric spaces, and

DOI: 10.26459/hueunijns.v134i1D.7670

by replacing the assumption of lower

semicontinuity of ¢ with the weaker condition of

0-lower semicontinuity.

Theorem 3 Let f:XXX->R be a monotone
bifunction. Assume that there exists a function @:X —

R and a constant y > 0 such that
(a) @ is 0-lower semicontinuous and is bounded below;

(b) f(x,y) 2 9(y) = @(x) forall x,y € X;

(c) for each X € X with ;g)f( @(x) < @(R), there exists
z € X such that z + X and

f(x,2) +yd(x,2) <0.

Then, f is linearly conditioned with modulus y.

Proof. Denote by E the set of minimisers of ¢.
Then, by condition (b), E € X*. For reach x € X,
set

S ={y eX:p(y) — o) +yd(y,x) < 0}

Then, S(x) is nonempty since x € S(x) .
Moreover, since ¢ is 0-lower semicontinuous, the
set S(x) is closed. Thus, (S(x),d) is a complete
metric space. Now, by applying Theorem 1 and
using Remark 2 for f(x,y) = ¢(y) — ¢(x), there
exists x* € S(x) such that
P() = o(x") +yd(x",y) > 0,Vy € S(x),y # x.

As in the proof of Theorem 2, we can show that

o) —ex) +yd(x",y) >0,vyeX,y #x. (12)

We claim that x* € E. Indeed, if x* ¢ E,
then by (c), there exists z € X with z # x* such
that

f(x*,z) +yd(x*,z) <0.

This, together with (b), implies that
o(2) —p(x") +yd(x*,z) <0.

This contradicts (12). So, x* € E c X and
hence x* € S(x) N X*. This means that for each

x € X, there exists x* € X* (depending on x) such
that

yd(x,x*) < @(x) — (x").
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Using (ii), Lemma 1 and the monotonicity of f,

one has for each x € X that

yd(x, X*) < yd(x,x") < o(x) — p(x7)
= p(x) — p(Px(x))
+ o(Px(@) —o(x?)
< f(Px+(x), %) + f(x*, Py (x))
< —f(x, PX*(x)).

Here, according to Lemma 1,
f(x",Py+(x)) =0 as x",Py-(x) € X*. The latter
inequality means that X* is linearly conditioned

with modulus y. [ ]
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