
Hue University Journal of Science: Natural Science  
Vol. 134, No. 1S-1, 107–116, 2025 (Special Issue: IFGTM 2025) 

pISSN 1859-1388 
eISSN 2615-9678 

 

DOI: 10.26459/hueunijns.v134i1S-1.7892 107 

 

 

Assessing the trend of ozone concentration and its key influences  

at a monitoring station in Hanoi, Vietnam, in 2018–2020 

Cao Thi Mai Huong, Vo Thi Le Ha *, Ly Bich Thuy, Nguyen Van Linh  

School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet street, Hai Ba 

Trung district, Bach Khoa, Hanoi, Vietnam 

* Correspondence to Vo Thi Le Ha <ha.vothile@hust.edu.vn> 

(Received: 26 June 2025; Revised: 01 September 2025; Accepted: 04 September 2025) 

Abstract. Ozone (O3) is an air pollutant problem in Hanoi, indicating photochemical smog and posing 

health risks. The current O3 problem remains relatively underexplored. This study aims to evaluate the 

temporal trend of O3 formation over the period from 2018 to 2020 at a monitoring station in Hanoi and 

the relationship among O3 levels, the precursor, and meteorological factors. Multiple linear regression 

(MLR) and Boosted regression trees (BRTs) models were applied to analyse and quantify the influence 

of meteorological factors and precursor pollutants on O3 concentrations. The de-weather package was 

used to estimate O3 concentration after removing the meteorological effects. The monthly O3 

concentration decreased in the winter season and rose in the summer season. The peak of hourly O3 

levels was consistently observed between 12:00 and 15:00 across all seasons, corresponding to peak 

photochemical activity. Both MLR and BRTs show that temperature and solar radiation were the 

dominant drivers of O3 variability. Results from the BRTs model indicate that the de-weathering O3 

concentrations exhibited much less variation than the observed values. 
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1 Introduction 

Ozone (O₃), a triatomic molecule of oxygen, 

constitutes the stratospheric ozone layer that 

protects life on Earth from harmful ultraviolet 

(UV) radiation. In contrast, O3 in the troposphere is 

a harmful air pollutant that poses risks to both 

human health and ecosystems. While a small 

fraction originates from stratospheric transport, 

most of it is produced through photochemical 

reactions involving nitrogen oxides (NOₓ) and 

volatile organic compounds (VOCs) in the 

presence of sunlight [1].  

O3 exposure poses significant health risks, 

including pneumonia and chronic obstructive 

pulmonary disease (COPD), with impacts 

dependent on concentration and exposure time [2–

5]. WHO also showed that the daily mortality rate 

increases from 0.3% to 0.5% for each 10 μg/m3 (8-

hour mean O3 concentration) increase in O3 

concentration in the ambient air from the 

background concentration threshold of 70 μg/m3 

[6]. Luong et al. [7] found that every 10 μg/m³ 

increase in the overall cumulative lag effect of 5 

days exposure to O3 in Hanoi was associated with 

a 0.7% rise in respiratory hospital admissions, with 

children under five most affected in winter. In 

addition to health impacts, elevated ground-level 

O3 damages crops and man-made materials, and 

structures. Studies have shown significant yield 

losses in rice, wheat, and beans with an increase in 

O3 concentrations [8–12], with effects, including 

reduced biomass, leaf damage, and smaller grain 

production. O3 also accelerates the degradation of 

man-made materials and heritage structures 
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through its strong oxidative properties, especially 

when interacting with other pollutants [13, 14]. 

Several studies have addressed O₃ pollution 

in Hanoi, which described a picture of 

considerable variability in the trends and 

magnitude of O₃ pollution across time and seasons 

[15–18]. They reflected differences in observation 

periods as well as the influence of meteorological 

factors. Especially, Chu et al. reported a steady 

decline in annual O3 concentration from 41 to 14 

µg/m³ between 2002 and 2010, and June and 

October experienced the highest O3 concentration 

[15]. Dam et al. found that the monthly O3 level 

reached a peak from January to March in 2003 [16]. 

Sakamoto et al. observed that the annual average 

O3 level reached 37 µg/m³ from May to August, 

2016, witnessing a higher monthly concentration 

[17]. Duong et al. recorded an annual average of 53 

µg/m³ in 2016, with higher concentrations during 

summer months, generally from May to November 

[18]. Across studies, O₃ concentration typically 

peaked around 14:00 and dropped to its lowest 

around 6:00.  

Multiple linear regression (MLR) has been 

widely applied to quantify the influences of 

meteorological conditions and precursor 

substances on the O3 ground level. Studies across 

Asia—including in China, Thailand, India, and 

Japan—demonstrate that MLR effectively 

quantifies the relative influence of variables such 

as temperature, solar radiation, wind speed, and 

relative humidity [20–25]. A research applying 

MLR was conducted in Hanoi in 2017 and 2018 

[19]. Consistently, temperature and solar radiation 

indicated positive associations with O3 formation 

through accelerating photochemical reactions [20–

25]. While useful, MLR is limited in capturing 

nonlinear interactions. Boosted regression trees 

(BRTs) based “de-weathering” technique further 

normalises meteorological influences on O₃ 

concentrations by normalising meteorological 

effects. This allows for a more accurate assessment 

of precursor-driven variability and provides 

clearer insights into O₃ pollution dynamics. To the 

best of our knowledge, there has been a lack of 

comprehensive investigations into the influence of 

meteorological conditions and precursor 

substances on O3 formation and concentration 

levels in Hanoi. Therefore, this study aims to 

determine the current O3 levels and to investigate 

the influences of meteorological factors and their 

precursors on O3 concentration. The results can 

support further understanding of the temporal 

trend and potential mitigation policy towards O3 

pollution. 

2 Materials and methods 

2.1 Monitoring sites, measuring instruments, 

and monitoring data 

This study was conducted in Hanoi, a metropolitan 

city in Northern Vietnam with about 8 million 

inhabitants [26]. An automatic air quality 

monitoring station is located in Cau Giay District. 

The station is characterised as an urban station, 

about 27 m from the residential road and 335 m 

from the main road. The monitoring site was not 

affected by any obstacles in the surrounding area 

and is presented in Fig. 1. 

The measurement instrument of the urban 

station was an O342e UV photometric ozone 

analyser (Envea Company, France). This analyser 

was a standard one and located on the rooftop of 

the DONRE’s building. The measurement 

principle of O342e is based on the direct absorption 

of ultraviolet light, specifically utilising the 

property that O3 molecules absorb UV radiation at 

a wavelength of 255 nm. The degree of UV 

absorption is directly related to the O3 

concentration, as described by the Beer-Lambert 

law [27].  
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Other data, including meteorological 

parameters (pressure, temperature, relative 

humidity (RH), solar radiation, wind speed, and 

rainfall) and precursors (NO, NO2, and CO) were 

also collected from the station as one-hour 

averages. 

All instruments were operated, calibrated 

by the Hanoi Natural Resources & Environment 

Department. 

2.2 Data analysis 

Multiple linear regression 

Multivariate regression analysis was 

established as follows (Eq. (1)): 

  Y=  α + ∑ β
𝑗
 × Xj

k
j=1 + ε              (1) 

where Y is the dependent variable (O3 

concentration); Xj is the independent variable 

encompassing meteorological factors; α is the 

intercept value; βj is estimated as the regression 

coefficients of respective independent variables; ε 

is the model error; k is the number of 

meteorological variables. 

Fig. 1.  Map of monitoring site 

The meteorological factors considered in 

this study, including daily wind speed, 

temperature, RH, pressure, solar radiation, 

rainfall, and those from the previous day, were 

also incorporated into the correlation analysis to 

determine the lag effect.  

Daily O3 concentration was used 

accordingly. The Bayesian model average (BMA) 

package was utilised to identify the optimal MLR 

model. BMA allows the creation of the 2n models (n 

is the number of independent factors), and then 

five models were selected with the highest 

posterior probability. Parameters are selected in 

the five models in order to calculate the adjusted 

R2. The model with the highest adjusted R² was 

selected as optimal. The statistical significance of 

each parameter was evaluated by using a stringent 

threshold (p < 0.01). 

For obtaining the representative seasonal 

pattern, the data were split into dry winter 

(October to December), humid winter (January to 

April), and summer (May to August) periods for 

MLR analysis. Detailed information about seasonal 

patterns of meteorological conditions in Hanoi can 

be found in Ly et al. [28].  

Boosted regression trees algorithm and weather-

normalised O3 concentration 

The Boosted regression trees from the ‘de-

weather’ package in R were employed. BRTs are 

recognised as a powerful tool for analysing air 

quality data, adept at capturing intricate 

interactions and non-linear relationships between 

variables.  

Predictor variables include temporal factors 

(week and weekday) and the current 

meteorological variables, as in MLR, in daily 

averages. Besides, the precursors of O3 (NO, NO2, 

and CO) in daily average were included. The BRTs 

model employs 80% of the data for training and the 

remaining 20% for validation, ensuring robust 

model performance evaluation. The model is 

subsequently trained on the designated training 

dataset. 

The testMod function within the ‘de-

weather’ package identified the optimal number of 

regression trees, corresponding to the number of 

individual BRTs models that are iteratively 

constructed and evaluated based on the training 

dataset. Then, the buildMod function selected the 

most appropriate completed BRTs model, which 
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was used for the input of the second step – weather 

normalisation.   

Several parameters were used to validate 

the performance of the BRTs model, such as RMSE 

(root mean square error) and r (correlation factor). 

RMSE serves to quantify the model’s error, and the 

correlation factor (r) determines the goodness-of-

fit of the BRTs model’s results; the values of r closer 

to 1 signify better performance. The formula for 

calculating RMSE is as follows (Eq. (2)) [29]: 

 RMSE = √
1

n
∑ (y

i
'  – y

i
)

2n
i=1               (2) 

where n is the number of values; yi' is the 

prediction; yi is the observation. 

For evaluating the meteorological effect on 

O3 concentration, daily data from one year were 

used.  

Once the model was built, the 

meteorological averaging procedure was applied 

by predicting multiple times with the random 

sampling of weather conditions. This sampling 

was carried out by the “metSim” function. This 

random process was repeated a thousand times. 

As a result, the final predicted O3 level (called 

weather-normalised level or de-weather level) was 

estimated by aggregating the thousand predictions 

obtained from the second step above. For 

obtaining the de-weather O3 level, daily data from 

2018–2020 were used. 

3 Results and discussion 

3.1 Variation of O3 concentration  

Monthly and annual O3 concentration 

Fig. 2 shows the daily O3 concentration from 2018 

to 2020. The annual average O3 concentration was 

15.0, 10.7, and 12.2 µg/m³ for 2018, 2019, and 2020, 

respectively. The data exhibit notable seasonal and 

interannual variation. The O3 levels peaked more 

frequently in 2018, declined in 2019, and rose again 

in 2020. This pattern suggests that the episodes of 

enhanced O₃ formation occurred more often or 

more intensely in 2018 and 2020 than in 2019. 

However, these short-term data do not support a 

definitive conclusion regarding long-term O3 

trends because of short observation time (only 3 

years) and substantial variation in meteorological 

conditions. The averages of O3 concentration in 

2018–2020 were lower than those reported by Chu 

et al., who found a steady decline in the annual O3 

concentration from 41 µg/m³ to 14 µg/m³ between 

2002 and 2010 [15] and those reported by Duong et 

al. (53 µg/m³) in 2016 [18]. 

Fig. 3 presents the monthly mean O3 

concentrations from 2018 to 2020. They were 

generally higher in summer (May – September) 

and lower in autumn and winter (October – April). 

The highest monthly averages occurred in May 

2018 and 2020 and September 2019, with peak 

values of 27.5 µg/m³ (2018), 22.1 µg/m³ (2020), and 

17.3 µg/m³ (2019). In other words, the O3 

concentrations tended to peak in warmer months, 

especially from May to September each year. The 

lowest values recorded were 1.6 µg/m³ in 2018, 5.3 

µg/m³ in 2019, and 3.8 µg/m³ in 2020, occurring in 

January, February, and December, respectively. 

Elevated summer O3 levels were associated with 

higher temperatures (27–32 °C) and increased solar 

radiation, both of which favour O3 formation. 

These seasonal patterns are consistent with 

previous studies conducted in Hanoi; for example, 

Duong et al. reported an annual mean of 53 µg/m³ 

in 2016, with higher concentrations from May to 

November [18]. 
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Fig. 2. Daily O3 concentrations from 2018 to 2020 

Fig. 3. Monthly O3 concentration from 2018 to 2020 

Diurnal O3 concentrations 

Fig. 4 illustrates the diurnal variation of O3 

concentrations at the station. During the study, the 

hourly O3 concentration remained below the 

threshold set according to the Vietnam standard – 

QCVN 05:2023/BTNMT (200 µg/m3). Diurnal 

variation in the O3 levels in 2018 was higher than 

that in other years. A distinct diurnal pattern in O3 

concentration is observed. The O3 level remained 

low from midnight and 7:00 the following day, 

with a gradual reduction to the end of this period, 

because of the lack of sunlight, minimal 

photochemical activity, and potential reactions 

with NO. Then, the O3 level rose quickly and 

reached a peak around midday, typically between 

13:00 and 15:00, depending on the year, as a result 

of increasing solar radiation, which enhances 

photochemical processes involving O3 precursors 

like NO₂ and VOCs. Then, the O3 level quickly 

declined until 21:00 and more slowly through the 

night until 7:00 the following day. This diurnal 

pattern reflects the influence of photochemical 

processes and atmospheric dynamics on O3 

formation. The ratio between the highest and 

lowest daily O3 value was approximately 4 times. 

This observed daily trend of O3 variation shows 

considerable similarity to findings from previous 

studies conducted in Hanoi City [15, 17, 18] and to 

broader global observations [20], suggesting that 

consistent photochemical processes drive the 

patterns of O3 formation and depletion. 

Fig. 4.  Diurnal variation of O3 from 2018 to 2020 

3.2 Influence of meteorological conditions on 

O3 concentration across seasons 

The impact of meteorological conditions on O3 

concentration was analysed across three distinct 

seasons in Hanoi: the dry winter (October to 

December), the humid winter (January to April), 

and the summer (June to August). Table 1 presents 

the correlation results in the period of 2018–2019 

from the multivariate linear regression model 

across seasons. In general, meteorological factors 

explained 56%–82% of O3 variability, with strong 

influences from current temperature, rainfall, RH, 

and wind speed and lagged effects of the previous-

day conditions (previous temperature, RH, 

rainfall, solar radiation, and wind speed) in winter, 

whereas the explained variance dropped to   

24%–43% in summer, with solar radiation, RH, and 

lagged temperature, and wind speed, showing 

significant correlations in summer. This indicates 

that O₃ formation is more strongly influenced by 

precursor emissions and enhanced photochemical 

processes than meteorological effects in summer, 

whereas in winter it was largely controlled by 

meteorological conditions. Meanwhile, solar 

radiation emerges as a crucial factor influencing O3 

concentration, as photochemical O3 formation is 

fundamentally dependent on sunlight. A positive 

correlation between current and previous solar 
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radiation and O3 concentration across almost all 

seasons was also observed, and this finding aligns 

with previous studies in the Bangkok region, 

Thailand [23], and Agra, India [24]. In addition, 

atmospheric pressure showed a positive 

correlation with O3 concentration during the 

humid winter of 2019, likely because of high-

pressure systems fostering conditions—clear skies, 

calm winds, and higher temperatures—that 

promote O3 formation, while low-pressure systems 

enhanced pollutant dispersion. On the other hand, 

both current and previous wind speeds generally 

exhibited an inverse relationship with O3 

concentration throughout the study period, 

suggesting that stronger winds enhanced the 

dispersion and dilution of O3 and its precursors. 

Similar findings were reported in Zhuzhou, China 

[20]. Overall, meteorological factors, such as 

temperature, humidity, and solar radiation, are 

consistently influential on O3 formation across the 

seasons. 

3.3 Partial influences of meteorological 

parameters on O3 concentration  

The boosted regression trees model, applied 

alongside the ‘de-weather’ package (or equivalent 

methodology for meteorological adjustment), 

demonstrated good performance based on the 

evaluated error and accuracy metrics. Specifically, 

the root mean square error of the validation dataset 

of 8.3, 14.2, and 5.6 µg/m³ and the correlation factor 

(r) of 0.96, 0.93, and 0.95 for 2018, 2019, and 2020, 

respectively, indicate satisfactory model accuracy. 

The partial effect of current meteorological factors 

on O3 concentration is displayed in Table 2. The 

partial effects of precursors and temporal 

components were not presented. 

Temperature consistently emerged as the 

most influential meteorological parameter in the 

years 2018–2020, accounting for 41.9%, 33.8%, and 

36.6% of the O3 variation, respectively (Table 2). 

The high contribution of temperature aligns with 

the result in the seasonal multivariate regression 

presented in Section 3.2 that temperature 

statistically significantly affected O3 concentration 

in almost all investigated seasons. Solar radiation 

generally exhibited a positive influence on O3 

levels, with a notable contribution of 4.1% in 2018, 

24.1% in 2019, and 14.4% in 2020. In 2018–2019, the 

atmospheric pressure, exceeding 1000 hPa, was 

associated with increased O3 concentration, but a 

clear trend was not observed in 2020. This suggests 

that high-pressure conditions, often characterised 

with clear skies, calm winds, and higher 

temperatures, promote O3 formation and 

accumulation. RH showed a consistent inverse 

relationship with O3 concentration across all the 

three years, indicating that elevated RH, often 

concurrent with rainfall events, contributed to 

reductions in O₃ levels. However, in this study, the 

rainfall contributed to a minor influence (0.6%–

1.6%) on O3 variation. The wind speeds above 1 m/s 

showed an inverse correlation with O3 

concentration, likely because of the stagnation of 

pollutants in areas with very low wind speeds. In 

conclusion, this study employed MLR to examine 

the linear influence of meteorological factors on O3 

variability, while BRTs were applied to improve 

predictive performance and assess the relative 

importance of variables. On the basis of the BRTs 

model, weather normalisation was conducted to 

obtain O3 concentrations adjusted for meteorology, 

yielding a time series that more accurately reflects 

underlying trends and emission-driven changes. 

By integrating both approaches, the analysis 

ensures scientific transparency and enhances the 

reliability of predictions and trend evaluations of 

O3 pollution in Hanoi.
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Table 1. Correlation between meteorological factors and O3 concentration 

Seasons of year Year R2 Adjusted –R2 Meteorological factors (p < 0.01) 

Wet winter season  

(Jan. to Apr.) 

2018 0.82 0.7 

WS 

Temp 

RH 

SR-pre 

RH-pre 

Rain-pre 

WS-pre 

2019 0.56 0.46 

WS 

P 

WS-pre 

2020 0.64 0.58 
Temp 

RH 

 

 

 

Summer season  

(Jun. to Aug.) 

2018 0.324 0.27 

SR 

RH-pre 

Temp-pre 

2019 0.43 0.38 
RH 

Temp-pre 

2020 0.24 0.18 
Temp-pre 

WS-pre 

Dry winter season 

(Oct. to Dec.) 

2018 0.58 0.5 

Rainfall 

SR-pre 

SR 

2019 0.79 0.73 
Temp 

RH-pre 

2020 0.72 0.66 
SR 

P-pre 

Note: WS: Wind speed; WS-pre: Wind speed in previous day; Temp: Temperature; Temp-pre, Temperature in previous day, RH: 

relative humidity; RH-pre: relative humidity in previous day; SR: solar radiation; SR-pre: Solar radiation in previous day; P: 

Pressure; P-pre: Pressure in previous day; R: Rainfall; R-pre: Rainfall in previous day. 

Table 2. Partial effect of meteorological factors on O3 concentration in 2018–2020 

Partial effect of meteorological factors 2018, % 2019, % 2020, % 

Temperature 41.9 33.8 36.6 

Solar radiation 4.1 24.1 14.4 

Relative humidity 9.1 6.6 5 
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Partial effect of meteorological factors 2018, % 2019, % 2020, % 

Pressure 4.4 4.3 4.1 

Wind speed 6.5 3.3 2.9 

Rainfall 1.6 0.6 1.2 

3.4 Weather-normalised levels of O3 

Fig. 5 illustrates the daily average O3 concentration 

during the study and compares the observed 

values (orange line) with weather-normalised 

values derived by using the ‘de-weather’ package 

(blue line). In this research, a weather-

normalisation technique was applied to eliminate 

the effects of weather on O3 levels, a method 

widely used in previous studies [29, 30]. The 

results show that the weather-normalised levels of 

O3 were more stable than the monitored O3 levels. 

It may be explained by removing meteorological 

variability, thereby providing a clearer 

representation of baseline pollutant contributions 

and clarifying long-term air pollution trends. In 

2018–2020, the differences between the minimum 

and the peak values of observed O3 levels were 

from 27.7 to 48.6 µg/m³, whereas those of 

normalised O3 levels were from 16.7 to 32.9 µg/m³. 

These findings are consistent with those reported 

by Ly et al. [31], who found strong impacts of 

meteorological conditions on daily averaged levels 

of PM2.5 in Hanoi. However, the annual averages of 

normalised values in the observed period have no 

statistically significant differences from the 

observed values. 

Fig. 5. Observed and weather-normalised levels of O3 in 

the researched period 

4 Conclusions 

This study examined the temporal variation of O3 

concentrations by using data from an automatic air 

quality monitoring station in Hanoi from 2018 to 

2020. The results show a decreasing trend in 

annual average O3 concentrations, from 

approximately 15.0 μg/m³ in 2018 to 10.7 μg/m³ in 

2019, with a slight increase to 12.2 μg/m³ in 2020. 

Throughout the study period, one-hour average O3 

concentrations remained below the limits specified 

by the Vietnam standard (QCVN 

05:2023/BTNMT). Diurnal patterns were consistent 

across the years, with peak O3 levels occurring 

between 12:00 and 15:00, and the lowest levels 

between midnight and 7:00 the following day. 

Seasonally, higher concentrations were observed 

during summer.  

A multiple linear regression model 

implemented in R explained 56%–82% of winter O3 

variability and 24%–43% in summer, with 

significant contributions from temperature, 

rainfall, relative humidity, solar radiation, wind 

speed, and lagged effects from the previous day. 

Utilising BRTs and the ‘deweather’ package 

approach enabled to quantify the percentage 

influence of each factor on O3 concentrations and 

the removal of meteorological confounding effects 

when examining inter-annual O3 trends. The 

results show that air temperature and solar 

radiation consistently accounted for a high 

percentage of influence, while the impact of other 

factors varied depending on the specific year.  

The weather-normalised levels of O3 were of 

lesser variation than the monitoring O3 levels, 

suggesting the significant effects of meteorological 
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conditions. These findings underline the 

importance of meteorological effects when 

evaluating O3 pollution and formulating effective 

air quality management strategies. 
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