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Abstract. Understanding protein-protein interactions (PPIs) helps to identify protein 

functions and develop other important applications such as drug preparation, protein-

disease relationship identification. Machine learning methods have been developed for the 

PPI prediction task in order to reduce the cost and time of previous experimental methods. 

In this paper, we study a method for determining PPIs using deep learning and protein 

sequence representation learning. In our method, an word embedding technique is utilized 

for protein sequence representation learning. This technique captures the semantic 

relationship between amino acids in protein sequences. The semantic relationship is then 

used as the input information, which is fed into a neural network to help recognize the 

interaction signature of the input protein pair. Different from previous studies, we integrate 

the protein sequence embedding mechanism into a neural network model. Thereby, the 

protein sequence embedding is better controlled for PPI prediction by our neural network 

model. We evaluate our method on benchmark datasets including Yeast, Human, and eight 

different independent sets. In addition, we also conduct an extensive comparison with the 

other existing methods. Our results show that the proposed method is superior to other 

existing methods and achieves high efficiency in predicting cross-species PPIs. The dataset 

and our source code are available at https://github.com/thnhub/BoostPPIP.git.  

Keywords: Protein-Protein interaction, Sequence analysis, Word embedding, Machine 

learning 

1 Introduction 

Determining protein-protein interactions (PPIs) is one of the important problems in the field of 

Bioinformatics. According to Li et al. [1, 3] understanding PPIs helps to identify protein 

functions and develop other important applications such as drug preparation, and identification 

of protein-disease relationships. In recent years, computational methods based on machine 

learning (ML) for PPI prediction are widely proposed and studied [4, 19]. ML methods are 

developed based on different biological information sources such as protein sequences, 

structural information of proteins, gene ontology annotation and semantic similarity of proteins 
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[2, 7]. In addition, protein sequence data is growing rapidly, which is creating an advantage 

over other sources of biological information [5]. To date, works using machine learning have 

produced various high-performance models to predict protein interactions from protein 

sequences alone. This success is mainly based on the representation of protein sequences and 

the selection of suitable learning models. 

Among them, Shen [8] used the Conjoint Triad (CT) descriptors to encode 

physicochemical properties of amino acids in a protein sequence, and chose an SVM to learn 

classifying from those encoded physicochemical properties. Guo [6] used the Auto Covariance 

(AD) descriptors to extract features from the amino acid sequence in a protein, and then fed 

these features into a Support Vector Machine (SVM) to predict protein interactions. Because 

proteins bind to each other at certain regions of the protein, so the authors, You et al. [9, 20], 

Zhou et al. [11], Yang et al. [10], and Zhou et al. [12] suggested using Multi-scale Continuous 

and Discontinuous local descriptors to encode protein sequences. These authors then 

experimented with their ideas using SVM, Gradient Boosting Decision Tree (GBDT) as classifier 

in PPI prediction tasks. The physicochemical and sequence-order information can be used to 

describe amino acids sequence, Chen et al. [13] proposed using a combination of multiple 

descriptors including, Pseudo-Amino Acid Composition (PseAAC), Autocorrelation (AC), and 

CT to capture that information in encoding protein sequences. The authors then utilized a 

LightGBM algorithm to learn protein interactions from that extracted information. Besides, 

evolutionary information can be also mined for encoding protein sequences. In GTB-PPI model, 

Yu et al. [14] utilized Pseudo Position-Specific Scoring Matrix (PsePSSM) descriptors to extract 

the evolutionary information, which is stored in the Position-Specific Scoring Matrix (PSSM). To 

enhance PPI prediction performance for their model, Yu et al. [14] combined with sequence-

order and physicochemical information using PseAAC, Pseudo Position-Specific Scoring Matrix 

(PsePSSM), Reduced Sequence Index-Vectors (RSIV) and AC descriptors. 

The works mentioned above have shown that protein sequence descriptors have been 

widely applied to the PPI prediction problem. Features extracted in those ways can not only be 

used to feed traditional machine learning models but also for deep learning models, such as the 

work of Du et al. [5]. In addition, various techniques in feature engineering have also been 

proposed to build higher quality features for PPI prediction, such as Chen et al. [13], Yu et al. 

[14], and Yu et al. [18]. However, those feature extraction methods require a great human effort 

in feature engineering. To overcome this disadvantage, various works have attempted to design 

deep learning models capable of automatically learning protein sequence representation for the 

PPI prediction problem. For example, Hashemifar et al. [15] proposed the DPPI model, which is 

a Convolutional Neural Network (CNN), taking the evolutionary information as raw features to 

infer PPIs. However, Hashemifar’s method runs extremely slow because it is required to run 

BLAST [40] against a huge protein the non-redundance database [41] to generate a PSSM matrix 

as its feature. Gonzalez-Lopez et al. [16] proposed the DeepSequencePPI model, which is based 
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on Recurrent Neural Networks (RNNs), learning embedding features from direct protein 

sequences without using any other feature extraction techniques. Since protein sequences can be 

very long, using RNNs to capture properties in protein sequences can lead to a vanishing 

gradient problem, which greatly affects the final prediction. Inspired by Natural Language 

Processing (NLP) techniques, Yao et al. [17] proposed the Res2vec framework, Tran and 

Nguyen [42] proposed the DeepCF-PPI model, which are capable to learn amino acid 

embeddings, providing a stepping stone for converting protein sequences into embedding 

vectors. But, both Res2vec and DeepCF-PPI were trained completely independently of their PPI 

predictors, leading to the fact that the generated embedding vector did not perform to its full 

potential in the PPI prediction task. To address the disadvantages of current methods and 

inherit the advantages of protein sequence representation learning, in this paper, we propose 

integrating the protein sequence embedding mechanism into a deep neural network, where an 

embedding matrix is learned by a Word2vec [23] model, is attached to a deep neural network to 

perform protein sequence embedding and the embedding process is controlled to perform PPI 

prediction. Through this work, we introduce a novel method to predict protein-protein 

interactions directly from sequence data and demonstrate the robustness of our method on a 

number of benchmark datasets. 

This paper consists of 4 sections: Section 3 introduces the problem of PPI prediction and 

previous works, Section 4 is our proposed method, Section 5 is the experiment results and 

comparison with the other existing works on benchmark datasets, and final conclusion is 

introduced in Section 6. 

2 Methods 

Determining protein-protein interactions (PPIs) can be regarded as a binary classification 

problem. The objective is to classify a given protein pair as belonging to the interacting class 

(denoted 1) or to the non-interacting class (denoted 0). In this study, the input of the PPI 

prediction problem is a pair of protein sequences and its output is the probability of interaction. 

Based on the interaction probability, we can completely classify the given protein sequence 

pairs into class 0 or 1. In this section, we will detail our proposed method. First, we will describe 

the technique used to represent protein sequences into embedding features. Then, we will 

introduce our deep neural network (DNN) architecture for determining PPIs from the obtained 

embedding features. 

2.1 Protein sequence representation learning 

Nowadays, there are many word embedding learning techniques have been proposed, for 

example, Word2vec [23], GloVe [24], BERT [25], etc. In this work, we utilize the Word2vec 
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technique, Continuous bag of word (CBOW) model [23], because of its simple architecture and 

the ability to learn large amounts of data. To apply the Word2vec technique, we first consider 

the protein sequence is a sentence where each word is an amino acid. Inspired by the idea of the 

CBOW model, we then build an algorithm (named Amino Acid Encoding) to learn an 

embedding matrix, where each row of this matrix is a vector representing one of the 20 

naturally occurring amino acids. Figure 1 illustrates the protein sequence translating into the 

corresponding sentence. Figure 3 describes and illustrates the architecture of the neural network 

used to learn the embedding matrix. 

 

Fig. 1.  An illustration of the translation of a protein sequence into a sentence in which an amino acid 

corresponds to a word 

The Amino Acid Encoding algorithm has two stages, the 𝑇 training dataset generating 

stage (steps 1-3) and the 𝑁𝑁  neural network training stage (steps 4-11). Let maxlen  be the 

maximum length of the protein sequences in 𝑃, from that, the computational complexity of the 

algorithm is determined by the formula, 𝑂(maxlen × |𝑃| + 𝑒𝑝 × |𝑇|). After running the Amino 

Acid Encoding algorithm we obtain the amino acid (word) embedding matrix 𝑊1. This matrix is 

then used to produce embedding vectors for amino acid 𝑎 and protein sequence 𝑝 according to 

the formulas,  

𝑎𝑊 = 𝑜𝑛𝑒ℎ𝑜𝑡(𝑎) ⋅ 𝑊1, (1) 

𝑝𝑊 = 𝑜𝑛𝑒ℎ𝑜𝑡(𝑝) ⋅ 𝑊1, (2) 

where 𝑜𝑛𝑒ℎ𝑜𝑡(𝑎) ∈ ℝ|𝑉|  is a one-hot vector representing 𝑎 , and 𝑜𝑛𝑒ℎ𝑜𝑡(𝑝) ∈ ℝ𝑁,|𝑉|  is one-hot 

matrix representing 𝑝 with 𝑁 is the sequence length. 

On the other hand, 𝑊1 is also used in the Embedding layer of the neural network used in 

the PPI prediction task that we will present in the next section. The 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(. ) activation 

function is used in the ‘Amino Acid Encoding’ to calculate probability distribution of words in the 

vocabulary 𝑉 when knowing the center word is explained by the formula,  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅) =
exp(𝑜𝑛𝑒ℎ𝑜𝑡(𝑥)⋅𝑊1⋅𝑊2)

∑
|𝑉|
𝑗

exp(𝑜𝑛𝑒ℎ𝑜𝑡(𝑦𝑗)⋅𝑊1⋅𝑊2
(𝑗)

)
 (3) 

 where 𝑜𝑛𝑒ℎ𝑜𝑡(𝑥) ∈ ℝ|𝑉| maps 𝑥 into an one-hot vector, 𝑊2
(𝑗)

 is column 𝑗 of matrix 𝑊2. 
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To the network 𝑁𝑁  can capture the semantic relationship between amino acids, it is 

important to feed it a large set of sequences. In this study, we utilized the UniProtKB database 

[27]. Besides, the hyperparameters of 𝑁𝑁 including, the window 𝑤, the learning rate 𝑙𝑟, and the 

number of steps in training 𝑒𝑝 are needed to choose carefully. To get those hyperparameters, we 

applied the grid search method. Finally, we select 𝑤 = 5, 𝑙𝑟 = 0.025, and 𝑒𝑝 = 10, respectively. 

 

Fig. 2.  CBOW (Continuous Bag of Words) model’s architecture is used in the Amino Acid Encoding 

algorithm. In this figure, 𝑤 is illustrated 5 
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2.2 Proposed model for PPI prediction 

Deep neural networks (DNNs) [28] are a type of neural network with a high number of layers. 

The main role of DNN is to extract high-level abstraction features, remove noise, and reduce 

data size. We used DNN architectures to design a PPI prediction model with embedding 

features as input. The architecture of our proposed DNN model consists of 2 layers: feature 

extraction and classification. For convenience, we named this model BoostPPIP (Boost PPI 

Prediction). The general architecture of our PPI prediction model is illustrated in Figure 4. 

 

Fig. 3.  The architecture of our proposed model, BoostPPIP (Boost PPI Prediction) 

Since the BoostPPIP model needs to receive protein sequences of equal length, we fixed it 

with a value of 𝑁. Specifically, protein sequences are truncated on the right side if their length is 

greater than 𝑁 , otherwise, “_” characters are added to the right side. Character “_” is 

represented by an embedding vector 0⃖ ∈ ℝℎ. The protein sequences are fixed after the Amino 

Acid Encoding algorithm performed. The Feature Extraction cascade consists of two branches 

and the architectures of the two branches are similar. Each branch is constructed by layers 

including, Embedding [28], Dense [28], Batch normalization [29], Dropout [30] and Flatten. The 

Embedding layer takes its input as a protein sequence, and its output is a matrix of size (𝑁, ℎ); 

where 𝑁  indicates the fixed sequence length, ℎ  indicates the dimensional of amino acid 

embeddings. The embedding matrix 𝑊1 is integrated into the Embedding layers to generate 

embedding vectors serving PPI prediction. The Flatten layers are tied after the Embedding 

layers in order to transform the output matrix of each Embedding layer into the vector with a 

size of ℎ ∗ 𝑁. Consequently, protein sequences after passing through the Embedding and Flaten 

layers, become embedding vectors. In this way, BoostPPIP can continue to adjust the weights of 

the matrix 𝑊1  during training on PPI datasets. By this integration, the word embedding 

mechanism has been integrated into a deep neural network model, and the embedding matrix is 

fine-tuned to be more optimal for the task of PPI classification. 

Mathematically, the embedding vector 𝑝 sequence at the output of the Flatten layer is 

expressed by the formula,  
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𝑣(𝑝) = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑝)) = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑝𝑊) = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 (𝑤𝑖𝑗𝑁,ℎ
) = 𝑤𝑙ℎ∗𝑁

, (4) 

where 𝑝𝑊 is defined as the formula (2). In the case, the model receives a 𝑏𝑎𝑡𝑐ℎ𝑛(𝑣(𝑝)) – a set of 

𝑛 protein sequences, the formula (4) can be expressed by the following formula,  

𝑏𝑎𝑡𝑐ℎ𝑛(𝑣(𝑝)) = 𝑤𝑙ℎ∗𝑁𝑛
. (5) 

The Dense layer is the layer where each of its neurons receives input from all the neurons 

of the previous layer. We used the Dense class to learn the non-linear relationships of their 

inputs, transform high-dimensional space into low-dimensional space, and extract abstract 

features. To learn the non-linear relationship between the inputs, the activation ReLU [31] was 

added after the Dense layers, except the last one. To speed up training and avoid overfitting, 

Batch normalization [29] and Dropout [30] layers are added after each the Dense layer. So, if the 

input of Dense layer is 𝑋 = 𝑏𝑎𝑡𝑐ℎ𝑛(𝑣(𝑝)), its output vectors are calculated by the formula,  

𝑓(𝑋) = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝛼 (𝑏𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚(𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝑋)))) (6) 

where 𝐷𝑒𝑛𝑠𝑒(𝑋) = (𝑋 ⋅ 𝑊 + 𝑏𝑖𝑎𝑠) ; 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) ; 𝑏𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚(𝑋) =
𝑋−𝑚𝑒𝑎𝑛(𝑋)

√𝑠𝑡𝑑(𝑋)+𝜖
 with 𝜖 =

0.001 , 𝑚𝑒𝑎𝑛(𝑋)  and 𝑠𝑡𝑑(𝑋)  are the mean and the standard deviation of column of 𝑋 ; 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡𝛼(𝑋) randomly assign with a rate 𝛼 on a number of columns of 𝑋 into values of 0; 𝑊 is 

the learnable embedding matrix of the neural network BoostPPIP. 

To connect two branches together and also to produce a feature vector representing the 

input protein sequence pair, we use an Add layer, through which two output feature vectors of 

two branches are added to form a single vector. Specifically, assuming that the input of the Add 

layer are 𝑓1(𝑋) and 𝑓2(𝑋), the its output is as formular (7).  

𝐹(𝑋) = 𝑓1(𝑋) + 𝑓2(𝑋) (7) 

𝐹(𝑋) then passed to the Classification cascade. Here, the input protein sequence pair 

representation is transformed into a two-dimensional vector in the final layer to be used for 

interaction determination. Finally, assigning the interaction probability to the input protein 

sequence pair, we use the 2-class Softmax function whose input is vector two at the output of 

the final layer. Specifically, if the input of 2-class Softmax is a two-dimensional vector, its output 

is calculated by the formula,  

�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) =
exp(𝑥)

∑2
𝑖=1 exp(𝑥𝑖)

 (8) 

The interaction probability of the input protein sequence pair of BoostPPIP was 

determined by applying the formulas (6) to (8). To train our model, we choose the value 𝑁 as 

the average length of the protein sequences in the training set. In the experiments, we utilized 

the Adam algorithm [32] to train BoostPPIP with the following loss function,  
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𝑙𝑜𝑠𝑠(𝑋, 𝑌) =
1

𝑛
∑𝑛

𝑖=1 (�̂� − 𝑦)2 (9) 

 where 𝑋, 𝑌 are sets of 𝑛 samples, protein pairs and labels, respectively. 

In our experiments, the learning rate used to optimize the neural network is set to 0.001 

with a penalty for error function of 0.001. The implementation is done with support from 

Python libraries including Tensorflow [33] and Scikit-learning [34]. 

3 Results and Discussion 

3.1 Evaluation criteria 

To evaluate the performance of the models, we use various evaluation metrics including, 

accuracy (Acc), sensitivity (Sen), precision (Pre), F1-score (F1) and Matthew’s correlation 

coefficient (MCC). These metrics are defined by the following formula,  

𝐴𝑐𝑐 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛
, (10) 

𝑆𝑒𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
, (11) 

𝑃𝑟𝑒 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
, (12) 

 𝐹1 = 2 ×
𝑃𝑟𝑒×𝑆𝑒𝑛

𝑃𝑟𝑒+𝑆𝑒𝑛
, (13) 

 𝑀𝐶𝐶 =
𝑡𝑝×𝑡𝑛−𝑓𝑝×𝑓𝑛

√(𝑡𝑝+𝑓𝑝)(𝑡𝑛+𝑓𝑛)(𝑡𝑝+𝑡𝑛)(𝑓𝑝+𝑓𝑛)
⋅ (14) 

where 𝑡𝑝, 𝑡𝑛, 𝑓𝑝, 𝑓𝑛 are the number of positive samples (interacting protein pairs) predicted to 

be positive, and the number of negative samples (pairs) respectively. non-interacting proteins) 

was predicted to be negative, the number of positive samples was predicted to be negative, and 

the number of negative samples was predicted to be positive. 

In addition, we also use the area under the Receiver curve operating characteristic 

(AUROC) and the Precision-Recall curve (AUPRC) to evaluate the performance of models. The 

large area represents the high performance of the model. 

3.2 Datasets 

We use ten PPI datasets for experiments on the proposed model and for comparison with 

existing methods as well. We divide them into two groups, the first group is used for cross-

validation and the second group is used for the independent tests. The first group consists of 

two datasets, Yeast and Human. The Yeast dataset was built and introduced in the paper [8]. 

The Yeast dataset contains interacting protein pairs selected from the DIP database [35], 

including 5,594 interacting pairs and 5,594 non-interacting pairs, after removing protein pairs 
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with sequence length less than 50 and sequence identification greater than or equal to 40% 

using CD-HIT tool [36]. The Human dataset was introduced by Huang et al. [37], which was 

collected from the HPRD database (https://www.hprd.org/), consisting of 3,899 interacting 

protein pairs and 4,262 non-interacting protein pairs. The second group consists of 5 cross-

species PPI datasets and 3 PPIs network datasets. These datasets were downloaded from the 

DIP database [35] (version 2017-02-05) and retained only protein pairs identified as physically 

interacting. Five cross-species PPI datasets include Caenorhabditis Elegans (Celeg), Escherichia 

Coli (Ecoli), Homo Sapiens (Hsapi), Helicobacter Pylori (Hpylo) and Mus Musculus (Mmusc); 

the number of samples is respectively 4,013, 6,954, 1,412, 1,420, and 313. Three PPI network 

datasets include One-core Network (CD9), Wnt-related Network (Wnt) and Cancer-specified 

Network (Cancer) with the number of positive samples of these data sets was 16, 96 and 108, 

respectively. 

3.3 Optimal hyperparameters 

To choose the optimal configuration for the BoostPPI model, we need to observe the influence 

on PPI prediction through different combinations of two hyperparameters, the number of 

Dense layers at the Feature Extraction cascade and size ℎ of the embedding vector. Observation 

is performed on the Yeast dataset by dividing it into three parts, 70% for the training set, 10% 

for the validation set, and 20% for the test set. The optimal configuration is selected by 

comparing the model’s scores from the scales on the test set. Figure 5) shows the results 

obtained by the BoostPPIP model with different configurations. 

 

Fig. 4. Predictive performance of BoostPPIP model on the Yeast core dataset over different combinations of 

network depth and embedding size. The red vertical line at each metric represents the best combination 
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Our results (see Figure 5) show that the BoostPPIP model achieves the best performance 

on most measurements when the embedding vector size is 20 and the network depth is 4, with 

an Acc of 94.56%, Rec of 94.04%, F1 of 94.58% and MCC of 87.58%. Therefore, the embedding 

amino acid size of 20 and the number of Dense layers of 4 (in the Feature Extraction cascade) 

was selected as the optimal configuration of BoostPPIP. In addition, this experimental method 

is also used to find the optimal number of training times for BoostPPIP. Figure 6 shows that the 

model shows signs of overfitting at the 30th epoch, it becomes difficult to decrease the 

prediction error until the 50th epoch, after the model falls into a marked overfitting state. 

Therefore, we set up 50 times for training the BoostPPIP model. 

  

Fig. 5. The correlation between the prediction error and the number of training times of the BoostPPIP 

model. The experiment was performed on the set Yeast dataset. The blue line indicates the training 

error/training accuracy error (left side/right side), and the orange line indicates the test error/test accuracy 

(left side/right side) 

3.4 Comparison with traditional machine learning models 

The BoostPPIP model is designed based on DNNs, which can be regarded as a classifier with 

protein sequences as the input. To determine if using a neural network yields better 

performance than classifiers based on traditional ML, we compare prediction results obtained 

by BoostPPIP and 6 different well-known traditional ML models through 5-fold cross-

validation on the Yeast dataset. The comparied traditional ML classifiers including, Naive Bayes 

(NB), AdaBoost (Ada), SVM, Decision Tree (DT), K-Nearest Neighbors (KNN), and Random 

Forest (RF). In this experiment, the training of traditional ML models is processed in steps: First, 

the length of protein sequences in the Yeast dataset was fixed according to the same way as 

mentioned in 4.2, the fixed sequences are then converted to feature vectors according to the 

formula 2, and finally these feature vectors are used to train traditional ML models. Figure 7 

shows the comparison of models on AUROC and AUPRC measurements. 
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Fig. 6.  Comparing the proposed model with traditional models, including NB (Naive Bayes), DT (Decision 

Tree), Ada (AdaBoost), KNN (K-Nearest Neighbors), SVM (Support Vector Machine), and RF (Random 

Forest) 

We can see that BoostPPIP predicted better than NB, DT, Ada, KNN, SVM and RF. The 

AUROC and AUPRC values of BoostPPIP are 0.9%–40.4% and 0.7%–44.4% higher than the 

compaired classifiers. These results demonstrate that the use of neural networks in building 

classifiers is appropriate when combined with embedded features. We continue to perform 

other experiments to compare the performance of the proposed method with existing methods. 

Subsequent comparison experiments are performed on the same benchmark datasets, the same 

sampling method, and on the same predictive performance measurements. 

3.5 Performance of methods on the Yeast dataset  

Most of the methods that have been proposed for PPI prediction use the Yeast dataset to 

experiment and measure the prediction performance. In this experiment, we use 5-fold cross-

validation on the Yeast dataset, where the mean and the standard deviation values of metrics 

are obtained to measure the robustness of the methods. Table 1 lists methods’ prediction results. 

It can be seen that BoostPPIP achieved the highest prediction results with Acc, Sen, Pre, and 

MCC are 95.79%, 93.33%, 98.16%, and 91.7%, respectively. The BoostPPIP model helped to 

increase the performance prediction on the Acc, Sen, Pre, and MCC by 0.39%–8.39%, 0.63%–

6.3%, 0.11%–10.34% and 0.69%–7.49%, respectively. These results show that our method is 

achieving good results in comparison to other existing methods. 
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Table 1. Performance comparison on Yeast set using 5-fold cross-validation 

Methods Acc(%) Sen(%) Pre(%) MCC(%) Ref. 

Guo et al. 89.3 2.67 89.9 3.68 88.87 6.16 N/A [6] 

Guo et al. 87.4 1.38 87.3 4.68 87.82 4.33 N/A [6] 

You et al. 91.3 0.36 90.7 0.69 91.94 0.62 84.2 0.59 [9] 

You et al. 93.9 0.36 91.1 0.31 96.45 0.45 88.6 0.63 [38] 

Ding et al. 95.0 0.46 92.7 0.50 97.31 0.55 90.1 0.92 [21] 

DeepPPI 94.4 0.30 92.1 0.36 96.65 0.59 89.00 0.62 [5] 

DPPI 94.6 92.2 96.68 N/A [15] 

DeepFE-PPI 94.8 0.61 93.0 0.66 96.45 0.87 89.6 1.23 [17] 

DeepSeqPPI 94.7 0.43 92.4 1.34 96.76 0.68 89.4 0.8 [16] 

GTB-PPI 95.2 0.25 92.2 0.36 97.97 0.60 90.5 0.53 [14] 

GcForest-PPI 95.4 0.18 92.7 0.44 98.05 0.25 91.0 0.35 [18] 

BoostPPIP 95.79 0.45 93.33 0.59 98.16 0.34 91.69 0.89 This work 

Note: The results are taken from the author’s report. N/A means not reported. Bold font represents the 

highest value.  

3.6 Performance of the methods on the Human dataset 

We further compare our method with other existing methods on the Human. In this test, we 

also evaluate methods through 5-fold cross-validation. The prediction results of the methods 

are listed in Table 2. As shown in Table 2, the highest performance on Acc, Sen, and MCC 

metrics achieved by BoostPPIP, respectively, 99.33%, 99.74% and 98.65%. Our method hepled to 

increase the prediction accuracy from 0.63% to 3.73% comparing to the other methods. The 

sensitivity was also increased from 0.17% to 5.64%, and the MCC was increased from 1.25% to 

7.45%. However, the precision achieved by BoostPPIP was 98.86%, ranking second after 

DeepPPI [5]. However, MCC achieved by BoostPPIP was 2.35% higher than that of DeepPPI, 

which shows that our method has better results in predicting both interacting and non-

interacting classes. Moreover, the accuracy achieved by BoostPPIP was higher than DeepPPI’s 

in independent testing. 

Table 2. Performance comparison on Human set using 5-fold cross-validation 

Methods Acc(%) Sen(%) Pre(%) MCC(%) Ref. 

Pan et al. 96.4 94.2 N/A 92.8 [22] 

Pan et al. 95.7 97.6 N/A 91.8 [22] 
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Methods Acc(%) Sen(%) Pre(%) MCC(%) Ref. 

Ding et al. 97.6 96.6 98.3 95.1 [21] 

Ding et al. 96.1 95.1 96.97 92.2 [21] 

Ding et al. 95.6 94.1 96.9 91.2 [21] 

Huang et al. 96.3 99.56 92.56 92.8 [37] 

DeepPPI 98.1 96.95 99.13 96.3 [5] 

DeepSeqPPI 97.98 97.98 97.98 96 [16] 

DeepFE-PPI 98.7 98.5 98.8 97.4 [17] 

Li et al. 96.1 95.2 96.6 92.5 [39] 

BoostPPIP 99.33 0.13 99.74 0.14 98.86 0.25 98.65 0.27 This work 

Note: The results are taken from the author’s report. N/A means not reported. Bold fold represents the 

highest value.  

3.7 Independent testing 

Testing on cross-species PPI prediction is very important, a classifier learned on the PPI dataset 

of one species (e.g. Saccharomyces cerevisiae) should be applied to identify PPIs in another (e.g. 

Homo sapiens), meanwhile, the PPI network dataset provides some reference information for 

identifying PPIs from the PPIs network which has not been identified yet [13, 14]. In this test, 

we use all 11,188 samples of Yeast dataset as training set and 8 independent data sets as test set. 

The accuracy of predictions across 5 cross-species PPI datasets and 3 PPIs network datasets 

were used to test the generality of the methods. The Figure 4 is an illustration of a PPI network, 

the Cancer-specific network. The prediction results of the methods are summarized in Table 3. 

Experimenting on different interactive datasets, the BoostPPIP model achieved 100% 

accuracy on four datasets, respectively, Celeg, Hsapi, Hpylo, Mmusc. On the Ecoli dataset, 

BoostPPIP achieved an accuracy of 99.88% (correct prediction of 6,946 samples out of a total of 

6,954 samples), 0.12% lower than the accuracy achieved by DeepFE-PPI [17]. However, the 

DeepFE-PPI model was not tested on the PPIs network datasets. Compared with the other 

existing methods, our method and DeepFE-PPI obtained the highest accuracies. Experiment 

results on the PPIs networks listed in Table 3 These results indicate that our proposed model 

has high generalizability. 
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Table 3. Independent test results of the methods. 

     

Methods  
 Ecoli   Celeg   Hsapi   Hpylo   Mmusc   CD9   Wnt   Cancer 

Shen et al. 

[8] 
N/A N/A N/A N/A N/A 81.25 76.04 N/A 

Zhou et al. 

[12] 
71.24 75.73 76.27 N/A 76.68 N/A N/A N/A 

Ding et al. 

[21] 
92.80 92.16 94.33 N/A 95.85 87.50 94.79 N/A 

You et al. 

[20] 
89.30 87.71 94.19 N/A 91.96 N/A N/A N/A 

Huang et 

al. [37] 
66.08 81.19 82.22 82.18 79.87 N/A N/A N/A 

DeepPPI 

[5] 
93.87 92.92 93.13 93.77 93.93 N/A N/A N/A 

DPPI [15] 96.66 95.51 96.24 N/A 95.84 N/A N/A N/A 

LightGBM-

PPI [13] 
92.16 90.16 94.83 N/A 94.57 93.75 92.70 N/A 

DeepFE-

PPI [17] 
100 100 100 100 100 N/A N/A N/A 

GTB-PPI 

[14] 
94.06 92.42 97.38 N/A 98.08 93.75 95.83 N/A 

GcForest-

PPI [18] 
96.30 96.01 98.58 N/A 99.04 100 97.92 100 

Li et al. [39] N/A 90.93 92.21 92.54 91.37 N/A N/A N/A 

BoostPPIP 99.88 100 100 100 100 100 100 100 

Note: The results (accuracy – %) are taken from the author’s report. N/A means not reported. Bold fold 

represents the highest value.  



jos.hueuni.edu.vn                                                                                                                    Vol. 132, No. 2B, 2023 

 

47 

 

Fig. 7. Illustration of Cancer-specific network. The node represents a protein, the edge represents a 

prediction 

4 Conclusion  

In this study, we proposed a novel method for predicting PPIs directly from protein sequences 

data. In our method, protein sequences are converted into embeddings by a model learning the 

semantic relationship between amino acids. Our results have shown that the embedding 

features are effective in predicting protein interactions. In particular, this type of feature 

enhances the generality of our model in the task of determining across-species PPIs. Using the 

softmax function to calculate the probability distribution is not really beneficial in the case of a 

large vocabulary. However, since our proposed method considers only one amino acid as a 

word, the size of the generated vocabulary is small, specifically with only 25 elements 

(including 20 amino acids that have been identified in nature and 5 amino acids that have not 

been identified). Therefore, the softmax function is still efficient for our proposed method. In 

future work, we intend to incorporate our proposed model with other representation learning 

methods such as Doc2vec, Glove, and BERT. 

Acknowledgment 

This work was supported by Hue University under Grant No. DHH2023-19-03.  



Tran Hoai Nhan et al. Vol. 132, No. 2B, 2023 

 

48 

References  

1. Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan, and X. Gao, “Deep learning in bioinformatics: Introduction, 

application, and perspective in the big data era,” Methods, vol. 166, pp. 4--21, Aug. 2019, doi: 

10.1016/j.ymeth.2019.04.008. 

2. Z. G. Gao, L. Wang, S. X. Xia, Z. H. You, X. Yan, and Y. Zhou, “Ens-PPI: A Novel Ensemble Classifier 

for Predicting the Interactions of Proteins Using Autocovariance Transformation from PSSM,” Biomed 

Res Int, vol. 2016, 2016, doi: 10.1155/2016/4563524. 

3. J. de Las Rivas and C. Fontanillo, “Protein-protein interactions essentials: Key concepts to building 

and analyzing interactome networks,” PLoS Comput Biol, vol. 6, no. 6, pp. 1--8, Jun. 2010, doi: 

10.1371/JOURNAL.PCBI.1000807. 

4. L. Skrabanek, H. K. Saini, G. D. Bader, and A. J. Enright, “Computational prediction of protein-protein 

interactions,” Mol Biotechnol, vol. 38, no. 1, pp. 1--17, 2008, doi: 10.1007/s12033-007-0069-2. 

5. X. Du, S. Sun, C. Hu, Y. Yao, Y. Yan, and Y. Zhang, “DeepPPI: Boosting Prediction of Protein-Protein 

Interactions with Deep Neural Networks,” J Chem Inf Model, vol. 57, no. 6, pp. 1499--1510, Jun. 2017, 

doi: 10.1021/acs.jcim.7b00028. 

6. Y. Guo, L. Yu, Z. Wen, and M. Li, “Using support vector machine combined with auto covariance to 

predict protein-protein interactions from protein sequences,” Nucleic Acids Res, vol. 36, no. 9, pp. 

3025--3030, May 2008, doi: 10.1093/nar/gkn159. 

7. K. H. Chen, T. F. Wang, and Y. J. Hu, “Protein-protein interaction prediction using a hybrid feature 

representation and a stacked generalization scheme,” BMC Bioinformatics, vol. 20, no. 1, pp. 1--17, 

Jun. 2019, doi: 10.1186/s12859-019-2907-1. 

8. J. Shen et al., “Predicting protein-protein interactions based only on sequences information,” Proc Natl 

Acad Sci U S A, vol. 104, no. 11, pp. 4337--4341, Mar. 2007, doi: 10.1073/pnas.0607879104. 

9. Z. H. You, L. Zhu, C. H. Zheng, H. J. Yu, S. P. Deng, and Z. Ji, “Prediction of protein-protein 

interactions from amino acid sequences using a novel multi-scale continuous and discontinuous 

feature set,” BMC Bioinformatics, vol. 15, no. Suppl 15, pp. 1--9, 2014, doi: 10.1186/1471-2105-15-S15-

S9. 

10. L. Yang, J.-F. Xia, and J. Gui, “Prediction of Protein-Protein Interactions from Protein Sequence Using 

Local Descriptors,” Protein Pept Lett, vol. 17, no. 9, pp. 1085--1090, 2010, doi: 

10.2174/092986610791760306. 

11. Y. Z. Zhou, Y. Gao, and Y. Y. Zheng, “Prediction of protein-protein interactions using local description 

of amino acid sequence,” in Communications in Computer and Information Science, 2011, vol. 202 

CCIS, no. PART 2, pp. 254--262. doi: 10.1007/978-3-642-22456-0\_37. 

12. C. Zhou, H. Yu, Y. Ding, F. Guo, and X. J. Gong, “Multi-scale encoding of amino acid sequences for 

predicting protein interactions using gradient boosting decision tree,” PLoS One, vol. 12, no. 8, Aug. 

2017, doi: 10.1371/journal.pone.0181426. 

13. C. Chen, Q. Zhang, Q. Ma, and B. Yu, “LightGBM-PPI: Predicting protein-protein interactions through 

LightGBM with multi-information fusion,” Chemometrics and Intelligent Laboratory Systems, vol. 

191, pp. 54--64, 2019, doi: 10.1016/j.chemolab.2019.06.003. 



jos.hueuni.edu.vn                                                                                                                    Vol. 132, No. 2B, 2023 

 

49 

14. B. Yu, C. Chen, H. Zhou, B. Liu, and Q. Ma, “GTB-PPI: Predict Protein--protein Interactions Based on 

L1-regularized Logistic Regression and Gradient Tree Boosting,” Genomics Proteomics 

Bioinformatics, vol. 18, no. 5, pp. 582--592, 2020, doi: 10.1016/j.gpb.2021.01.001. 

15. S. Hashemifar, B. Neyshabur, A. A. Khan, and J. Xu, “Predicting protein-protein interactions through 

sequence-based deep learning,” Bioinformatics, vol. 34, no. 17, pp. i802--i810, Sep. 2018, doi: 

10.1093/bioinformatics/bty573. 

16. F. Gonzalez-Lopez, J. A. Morales-Cordovilla, A. Villegas-Morcillo, A. M. Gomez, and V. Sanchez, 

“End-to-end prediction of protein-protein interaction based on embedding and recurrent neural 

networks,” in 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec. 

2018, pp. 2344--2350. doi: 10.1109/BIBM.2018.8621328. 

17. Y. Yao, X. Du, Y. Diao, and H. Zhu, “An integration of deep learning with feature embedding for 

protein--protein interaction prediction,” PeerJ, vol. 2019, no. 6, 2019, doi: 10.7717/peerj.7126. 

18. B. Yu, C. Chen, X. Wang, Z. Yu, A. Ma, and B. Liu, “Prediction of protein--protein interactions based 

on elastic net and deep forest,” Expert Syst Appl, vol. 176, p. 114876, Aug. 2021, doi: 

10.1016/J.ESWA.2021.114876. 

19. C. Xu, L. Jiang, Z. Zhang, X. Yu, R. Chen, and J. Xu, “An Integrated Prediction Method for Identifying 

Protein-Protein Interactions,” Curr Proteomics, vol. 17, no. 4, pp. 271--286, Jun. 2020, doi: 

10.2174/1570164616666190306152318. 

20. Z. H. You, K. C. C. Chan, and P. Hu, “Predicting protein-protein interactions from primary protein 

sequences using a novel multi-scale local feature representation scheme and the random forest,” PLoS 

One, vol. 10, no. 5, pp. 1--19, May 2015, doi: 10.1371/journal.pone.0125811. 

21. Y. Ding, J. Tang, and F. Guo, “Predicting protein-protein interactions via multivariate mutual 

information of protein sequences,” BMC Bioinformatics, vol. 17, no. 1, p. 398, Dec. 2016, doi: 

10.1186/s12859-016-1253-9. 

22. X. Y. Pan, Y. N. Zhang, and H. bin Shen, “Large-scale prediction of human protein-protein interactions 

from amino acid sequence based on latent topic features,” J Proteome Res, vol. 9, no. 10, pp. 4992--

5001, 2010, doi: 10.1021/pr100618t. 

23. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector 

Space,” Jan. 2013, {[}Online{]}. Available: http://arxiv.org/abs/1301.3781 

24. J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for Word Representation,” in 

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 

2014, pp. 1532--1543. doi: 10.3115/v1/D14-1162. 

25. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional 

Transformers for Language Understanding,” Oct. 2018. 

26. S. Ruder, “An overview of gradient descent optimization algorithms,” Sep. 2016. 

27. A. MacDougall et al., “UniRule: a unified rule resource for automatic annotation in the UniProt 

Knowledgebase,” Bioinformatics, May 2020, doi: 10.1093/bioinformatics/btaa485. 

28. S. Skansi, Introduction to Deep Learning. Cham: Springer International Publishing, 2018. doi: 

10.1007/978-3-319-73004-2. 

29. S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing 

Internal Covariate Shift,” Feb. 2015. 



Tran Hoai Nhan et al. Vol. 132, No. 2B, 2023 

 

50 

30. N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout: A Simple Way to Prevent 

Neural Networks from Overfitting,” 2014. 

31. A. M. Fred Agarap, “Deep Learning using Rectified Linear Units (ReLU).” {[}Online{]}. Available: 

https://github.com/AFAgarap/relu-classifier. 

32. D. P. Kingma and J. Lei Ba, “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION.” 

33. M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” May 2016, {[}Online{]}. 

Available: http://arxiv.org/abs/1605.08695 

34. F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, 

vol. 12, pp. 2825--2830, 2011. 

35. I. Xenarios, “DIP, the Database of Interacting Proteins: a research tool for studying cellular networks 

of protein interactions,” Nucleic Acids Res, vol. 30, no. 1, pp. 303--305, Jan. 2002, doi: 

10.1093/nar/30.1.303. 

36. W. Li and A. Godzik, “Cd-hit: a fast program for clustering and comparing large sets of protein or 

nucleotide sequences,” Bioinformatics, vol. 22, no. 13, pp. 1658--1659, Jul. 2006, doi: 

10.1093/bioinformatics/btl158. 

37. Y. A. Huang, Z. H. You, X. Gao, L. Wong, and L. Wang, “Using Weighted Sparse Representation 

Model Combined with Discrete Cosine Transformation to Predict Protein-Protein Interactions from 

Protein Sequence,” Biomed Res Int, vol. 2015, 2015, doi: 10.1155/2015/902198. 

38. Z. H. You, X. Li, and K. C. Chan, “An improved sequence-based prediction protocol for protein-

protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers,” 

Neurocomputing, vol. 228, no. October, pp. 277--282, 2017, doi: 10.1016/j.neucom.2016.10.042. 

39. Y. Li et al., “Robust and accurate prediction of protein--protein interactions by exploiting evolutionary 

information,” Sci Rep, vol. 11, no. 1, pp. 1--12, 2021, doi: 10.1038/s41598-021-96265-z. 

40. S. Altschul, “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” 

Nucleic Acids Res, vol. 25, no. 17, pp. 3389–3402, Sep. 1997, doi: 10.1093/nar/25.17.3389. 

41. E. W. Sayers et al., “Database resources of the national center for biotechnology information,” Nucleic 

Acids Res, vol. 50, no. D1, pp. D20–D26, Jan. 2022, doi: 10.1093/nar/gkab1112. 

42. H.-N. Tran, Q. N. P. Xuan, T.-T. Nguyen, “DeepCF-PPI: improved prediction of protein-protein 

interactions by combining learned and handcrafted features based on attention mechanisms,” Applied 

Intelligence, Dec. 2022, doi: https://doi.org/10.1007/s10489-022-04387-2  

 

 

 


