MỘT SỐ KẾT QUẢ VỀ CẤU TRÚC CỦA KHÔNG GIAN ĐỐI XỨNG SL(n;R)=SO(n)

Authors

  • Trần Đạo Dõng Ban Khoa học Công nghệ - Đại học Huế
  • Phan Thị Lan Hương Sở Giáo dục và Đào tạo Quảng Trị

Abstract

Locally symmetric spaces play an important part in differential geometry.

The typical class consists of quotients of symmetric spaces by arithmetic

groups,especially discrete groups.

There are many examples for this class of locally symmetric spaces such as the moduli

space of elliptic curves is the quotient of the upper half plane H2 by SL(2;Z), the

quotient of the upper half space H3 by SL(2;Z + iZ).

In this note, firstly, we study the differential and symmetric structure of the space

SL(n;R)=SO(n): Then we study the locally symmetric structure based on the action

of SL(n;Z) on SL(n;R)=SO(n).

Author Biography

Trần Đạo Dõng, Ban Khoa học Công nghệ - Đại học Huế

Trưởng Ban KHCN ĐHH

References

W.Knapp Anthony (2002), Lie Groups Beyond and Introduction, Progress in

Mathematics, Vol. 140, Second Edition.

E.P. van den Ban (2003), Lie groups, Lecture Notes in Mathematics, MRI, University

of Utrecht, Holland.

Jean Gallier(2009), Notes on Differential Geometry and Lie Groups, Lecture

Notes, University of Pennsylvania, Philadelphia, USA.

A. Borel-Lizhen Ji (2005), Compactifications of symmetric and locally symmetric

spaces, Lecture Notes, University of Michigan, USA.

Lizhen Ji (2004), Lectures on locally symmetric spaces and arithmetic groups, Lecture

Notes, University of Michigan, USA .

Jurgen Jost (2002), Riemannian Geometry and Geometric Analysis, Springer.

Published

2013-03-22