VỀ CĂN JACOBSON KIỂU(3,1) TRÊN CÁC NỬA VÀNH

Authors

  • Nguyễn Xuân Tuyến Trường Đại học Sư phạm, Đại học Huế
  • Lê Hoàng Mai Trường Đại học Đồng Tháp

Abstract

In this paper, we show that proposition 4.7 [8] is not correct in generaland give an adjustment for the proposition. Moreover, we describe classes of suchsemirings that Al-Thani's Jacobson radical [8] with coincides K. Iizuka's one [5]. Inthe case of cancellative semiring with identity, we define a strongly quasi-regular idealand find its relationship with the Jacobson radical of type (3.1).

References

S. BOURNE, The Jacobson radical of a semiring, Proc. Nat. Acad. Sci.,

(1951); 163

S. BOURNE and H. ZASSENHAUS, On the semiradical of a semiring, Proc.

Nat. Acad. Sci., 44(1958); 907

J. S. GOLAN, The theory of semirings with applications in mathematics and

theoretical computer science, Longman scientific and Technical, London, 1992,

pp.

U. HEBISCH and H. J. WEINERT, Radical theory for semirings, Quaestiones

Mathematicae, 20(1997), 647-661.

K. IIZUKA, On the Jacobson radical of a semiring, Tohoku Math. J.,

(1959); 409

T. Y. LAM, A First Course in Noncommutative Rings, Grad. Texts in Math.

no. 131, Springer-Verlag, Berlin, Heildeberg, New York, 2001.

H. M. AL-THANI, The Jacobson semiradical over a certain semiring, Tamkang

Journal of Mathematics, 37(2006), 67-76.

H. M. AL-THANI, The Jacobson radical of type (3,1), International Journal of

Modern Mathematies, 2(2007), 27-33.

H. M. AL-THANI, Characterizations of the Jacobson radical of type (3,1), International

Journal of Modern Mathematies, 2(2007), 53-61.

N. X. TUYEN and L. H. MAI, Hopkins Theorem about Jacobson radical

for additively cancellative semirings, Journal of science, Hue University,

(2010); 155

N. X. TUYEN and T. G. NAM, On radicals of semirings, Southeast Asian

Bulletin of Mathematics, 31(2007); 131

N. X. TUYEN, A theory of semirings and semimodules, Hue University Publishing

House, 2010.

Published

2013-03-22