VỀ CĂN JACOBSON KIỂU(3,1) TRÊN CÁC NỬA VÀNH
Abstract
In this paper, we show that proposition 4.7 [8] is not correct in generaland give an adjustment for the proposition. Moreover, we describe classes of suchsemirings that Al-Thani's Jacobson radical [8] with coincides K. Iizuka's one [5]. Inthe case of cancellative semiring with identity, we define a strongly quasi-regular idealand find its relationship with the Jacobson radical of type (3.1).References
S. BOURNE, The Jacobson radical of a semiring, Proc. Nat. Acad. Sci.,
(1951); 163
S. BOURNE and H. ZASSENHAUS, On the semiradical of a semiring, Proc.
Nat. Acad. Sci., 44(1958); 907
J. S. GOLAN, The theory of semirings with applications in mathematics and
theoretical computer science, Longman scientific and Technical, London, 1992,
pp.
U. HEBISCH and H. J. WEINERT, Radical theory for semirings, Quaestiones
Mathematicae, 20(1997), 647-661.
K. IIZUKA, On the Jacobson radical of a semiring, Tohoku Math. J.,
(1959); 409
T. Y. LAM, A First Course in Noncommutative Rings, Grad. Texts in Math.
no. 131, Springer-Verlag, Berlin, Heildeberg, New York, 2001.
H. M. AL-THANI, The Jacobson semiradical over a certain semiring, Tamkang
Journal of Mathematics, 37(2006), 67-76.
H. M. AL-THANI, The Jacobson radical of type (3,1), International Journal of
Modern Mathematies, 2(2007), 27-33.
H. M. AL-THANI, Characterizations of the Jacobson radical of type (3,1), International
Journal of Modern Mathematies, 2(2007), 53-61.
N. X. TUYEN and L. H. MAI, Hopkins Theorem about Jacobson radical
for additively cancellative semirings, Journal of science, Hue University,
(2010); 155
N. X. TUYEN and T. G. NAM, On radicals of semirings, Southeast Asian
Bulletin of Mathematics, 31(2007); 131
N. X. TUYEN, A theory of semirings and semimodules, Hue University Publishing
House, 2010.