CULTIVATION OF AEROBIC GRANULAR SLUDGE WITH INDUSTRIAL WASTEWATER IN SEQUENTIAL BACTH REACTOR

Abstract

Cultivation of aerobic granular sludge from activated sludge was carried out in 02 lab-scale Sequential Batch Reactors (SBRs) named R1 and R2. During the experimental period, both reactors were operated in similar condition with 240 minutes of cycle time and an airflow rate of 6L/min. R1 was fed with industrial wastewater collected from Phu Bai Industrial Zone, Thua Thien Hue Province, meanwhile, R2 has used a mixture of industrial and prepared synthetic wastewater with stepwise feeding of different volumetric fraction including 1:3; 1:1, and 3:1. After 7 weeks of operation, tiny granular size less than 1mm was observed, sludge biomass reached 5,8 g/L but filamentous sludge still appeared in R1. Meanwhile, in R2, granular sludge size of 1mm was dominant and biomass reached 6,8 g/L which was higher than its concentration in R1. Granules sludge in both reactors has good settling properties with a low SVI of 30-32 mL/gTSS. The removal efficiencies of organics (COD), ammonium (NH4-N), and phosphorus (P-PO4) in steady-state operation of R1 and R2 were stabled at 92-94%, 93-96%, and 65-71%, respectively. The rate of conversion NH4-N to NOx-N increased from 7-12% to 43-52% at the end of the experimental period. It was indicated that the nitrification of sludge was leveled up with the appearance of granular sludge and the development of biomass. Furthermore, in 43-52% rate of conversion NH4-N to NOx-N, the percentage of NH4-N converted to NO3-N accounting for about 40-47%, this result demonstrated that the nitrification process was nearly completed in both reactors.

https://doi.org/10.26459/hueunijese.v130i4B.5956
PDF (Vietnamese)

References

  1. Nguyễn Trọng Lực, Nguyễn Phước Dân, Trần Tây Nam, (2009), Nghiên cứu tạo bùn hạt hiếu khí khử COD và amoni trên bể phản ứng khí nâng từng mẻ luân phiên, Tạp chí Phát triển Khoa học và Công nghệ, Tập 12 (2), tr 39–50.
  2. Trần Quang Lộc, Nguyễn Quang Hưng, Nguyễn Thị Cẩm Yến, (2015), Đánh giá khả năng xử lý chất hữu cơ và amoni của bùn hạt hiếu khí trên nước thải chế biến thủy sản, Tạp chí Khoa học Đại học Huế, Tập 111(12).
  3. Trần Quang Lộc, Nguyễn Đăng Hải, Trần Thị Tú, Hoàng Ngọc Tường Vân, Nguyễn Quang Hưng, (2015), Sự hình thành và phát triển của bùn hạt hiếu khí ở các lưu lượng sục khí khác nhau trên bể phản ứng theo mẻ luân phiên, Tạp chí Khoa học Trường Đại học Cần Thơ, Tập 37(A), tr 33–41.
  4. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, (2005) Standard Methods for the Examination of Water and Wastewater. Washington DC, USA.
  5. A. Val del Río, (2012), Aerobic granular SBR systems applied to the treatment of industrial effluents, J. Environ. Manage., vol. 95, pp. 88-92. Doi: 10.1016/j.jenvman.2011.03.019.
  6. A. Dutta and S. Sarkar, (2015), Sequencing Batch Reactor for Wastewater Treatment: Recent Advances, Current Pollution Reports, vol. 1, no. 3. pp. 177–190. Doi: 10.1007/s40726-015-0016-y.
  7. B.-M. Wilén, R. Liébana, F. Persson, O. Modin, and M. Hermansson, (2018), The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality, Appl. Microbiol. Biotechnol., vol. 102, no. 12, pp. 5005–5020, doi: 10.1007/s00253-018-8990-9.
  8. B. Arrojo, A. Mosquera-Corral, J. M. Garrido, and R. Méndez, (2004), Aerobic granulation with industrial wastewater in sequencing batch reactors, Water Res., vol. 38 (14), pp. 3389–3399, doi: 10.1016/j.watres.2004.05.002.
  9. C. Di Iaconi, R. Ramadori, A. Lopez, and R. Passino, (2013), Aerobic granular sludge systems: The new generation of wastewater treatment technologies, Ind. Eng. Chem. Res., vol. 46, no. 21, pp. 6661–6665, 2007, doi: 10.1021/ie061662l.
  10. C. J. and M. R. Mosquera-Corral A, Vazquez-Pad´ın JR, Arrojo B, (2005), Aerobic Granular Sludge. IWA Publishing .
  11. H. Wang et al., (2018), Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: Effects of carbon to nitrogen ratios, Sci. Total Environ., vol.642, pp. 1145–1152, doi: 10.1016/j.scitotenv.2018.06.081.
  12. J. Ku, P. Anielak, and L. Rajski, (2012), Long-term cultivation of an aerobic granular activated sludge, Electron. J. Polish Agric. Univ., vol. 15, no. 1.
  13. M. K. Jungles, J. L. Campos, and R. H. R. Costa, (2014), Sequencing batch reactor operation for treating wastewater with aerobic granular sludge, Brazilian Journal of Chemical Engineering, vol. 31(1), pp. 27–33, doi: 10.1590/S0104-66322014000100004.
  14. M. Pronk, (2016), Aerobic Granular Sludge: Effect of Substrate on Granule Formation, Delft University of Technology, Holland.
  15. M. K. Jungles, M. Figueroa, N. Morales, (2011), Start up of a pilot scale aerobic granular reactor for organic matter and nitrogen removal, J. Chem. Technol. Biotechnol., vol. 86(5), pp. 763–768, doi: 10.1002/jctb.2589.
  16. Q. He, L.Tay (2018), Simultaneous nitrification, denitrification and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity: Impact of aeration time, Bioresour. Technol., vol. 263, pp. 214–222, doi: 10.1016/j.biortech.2018.05.007.
  17. R. Krishnen, A. Aris, K. Muda, N. Hashim, Z. Ibrahim, and M. R. Salim, (2017), Development of Biogranules in a Pilot-Scale Sequential Batch Reactor Treating Actual Textile Wastewater, J. Teknol., vol. 79(6), doi: 10.11113/jt.v79.10659.
  18. S. J. Sarma and J. H. Tay, (2018), Aerobic granulation for future wastewater treatment technology: challenges ahead, Environ. Sci. Water Res. Technol., vol. 4 (1), pp. 9–15, doi: 10.1039/C7EW00148G.
  19. T. T. P. Nguyen, V. P. Nguyen, T. B. H. Truong, and M. H. Bui, (2016), The Formation and Stabilization of Aerobic Granular Sludge in a Sequencing Batch Airlift Reactor for Treating Tapioca-Processing Wastewater, Polish J. Environ. Stud., vol.25(5), pp. 2077–2084, doi: 10.15244/pjoes/62736.
  20. Y. Q. Liu and J. H. Tay, (2015), Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate, Water Res., vol. 80, doi: 10.1016/j.watres.2015.05.015.
  21. Y. V. Nancharaiah and G. Kiran Kumar Reddy, (2018), Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications, Bioresour. Technol., vol.247, pp. 1128–1143, doi: 10.1016/j.biortech.2017.09.131.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array