NGHIÊN CỨU KHẢ NĂNG HẤP PHỤ ARSENITE VÀ ARSENATE BẰNG VẬT LIỆU DIATOMITE BIẾN TÍNH LƯỠNG OXIT SẮT-MANGAN

Authors

  • Bùi Hải Đăng Sơn NGhiên cứu sinh, trường đại học khoa học

Abstract

Bài báo này trình bày quá trình hấp phụ arsenite and arsenate bằng vật liệu biến tính lưỡng oxit sắt-mangan trên nền chất mang diatomite. Vật liệu biến tính được tổng hợp bằng phản ứng oxi hóa-khử giữa muối Fe(II) và KMnO4 trong môi trường pH=6. Đặc trưng vật liệu biến tính bằng các phương pháp nhiễu xạ tia X (XRD), kính hiển vi điện tử quét (SEM) và phương pháp phổ quang điện tử (XPS). Nồng độ dung dịch arsen được định lượng bằng phương pháp quang phổ hấp thụ nguyên tử (AAS). Đẳng nhiệt hấp phụ được thực hiện ở các pH khác nhau của dung dịch arsenite và arsenate từ 3,5-9,5, sử dụng các mô hình đẳng nhiệt Langmuir, Frendlich, Frendlich biến đổi (modified Freundlich) để nghiên cứu. Ngoài ra cơ chế hấp phụ, ảnh hưởng của lực ion NaCl, Na2CO3, Na3PO4, CaCl2, MgCl2 cũng được thảo luận. 

References

Tài liệu tham khảo

. Al-Ghouti M. A., Khraisheh M. A. M., Allen S .J., Ahmad M. N. (2003), The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms ofdiatomaceous earth, Journal of Environmental Management, 69, pp. 229-238.

. Bhatt A.S., Sakaria P.L., Vasudevan M., Pawar R.R., Sudheesh N., Bajaj H.C., Mody H.M. (2012), Adsorption of an anionic dye from aqueous medium by organoclays: equilibrium modeling, kinetic and thermodynamic exploration, RSC Advances, 2 (23), pp. 8663.

. Boldaji M.R., Nabizadeh R., Dehghani M.H., Nadafi K., Mahvi A.H. (2010), Evaluating the performance of iron nanoparticle resin in removing arsenate from water, J. Environ. Sci. Health Part A, 45, pp. 946-950.

. Chammui Y., Sooksamiti P., Naksata W., Thiansem S., Arqueropanyo O.-a. (2014), Removal of arsenic from aqueous solution by adsorption on Leonardite, Chemical Engineering Journal, 240, pp. 202-210.

. Chang F., Qu J., Liu H., Liu R., Zhao X. (2009), Fe–Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: Preparation and evaluation, Journal of Colloid and Interface Science, 338, pp. 353-358.

. Chen C.-L., Chiou H.-Y., Hsu L.-I., Hsueh Y.-M., Wu M.-M., Wang Y.-H., Chen C.-J. (2010), Arsenic in Drinking Water and Risk of Urinary Tract Cancer: A Follow-up Study from Northeastern Taiwan, Cancer Epidemiology,Biomarkers & Prevention, 19(1), pp. 101-110.

. Clifford D.A., Lin C.C. (1991) Arsenic (III) and arsenic(V) Removal from drinking water in San Ysidro, New Mexico, USEPA Project Summary, EPA/600/S2-91/011.

. Dixit S., Hering J.G. (2003), Comparison of Arsenic(V) and Arsenic(III) Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility, Environ. Sci. Technol. , 37, pp. 4182-4189

. Du Y., Zheng G., Wang J., Wang L., Wu J., Dai H. (2014), MnO2 nanowires in situ grown on diatomite: Highly efficient absorbents for the removal of Cr(VI) and As(V), Microporous and Mesoporous Materials, 200, pp. 27-34.

. Gu Z., Fang J., Deng B. (2005), Preparation and Evaluation of GAC-Based Iron-Containing Adsorbents for Arsen, Environmental Science & Technology, 39, pp. 3833–3843.

. Gupta S.K., Chen K.Y. (1978), Arsenic removal by adsorption, Journal of Water Pollution Control Federation, 50, pp. 493-506.

. Halsey G.D. (1952), The role of surface heterogeneity, Adv. Catal., 4 pp. 259-269.

. Hiemstra H., Van Riemsdijk W.H. (1999), Surface Structural Ion Adsorption Modeling of Competitive Binding of Oxyanions by Metal (Hydr)oxides, Journal of Colloid and Interface Science, 210, pp. 182-193.

. Jeppu G.P., Clement T.P. (2012), A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects, J Contam Hydrol, 129-130, pp. 46-53.

. Kang D., Yu X., Tong S., Ge M., Zuo J., Cao C., Song W. (2013), Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution, Chemical Engineering Journal, 228, pp. 731–740.

. Knoerr R., Brendlé J., Lebeau B., Demais H. (2013), Preparation of ferric oxide modified diatomite and its application in the remediation of As(III) species from solution, Microporous and Mesoporous Materials, 169, pp. 185-191.

. Kong S., Wang Y., Zhan H., Yuan S., Yu M., Liu M. (2014), Adsorption/Oxidation of Arsenic in Groundwater by Nanoscale Fe-Mn Binary Oxides Loaded on Zeolite, Water Environment Research, Volume 86 (Number 2), pp. 147-155.

. Lin T.F., Wu J.K. (2001), Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics, Wat. Res., 35 (8), pp. 2049-2057.

. Mandal S., Sahu M.K., Patel R.K. (2013), Adsorption studies of arsenic(III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43), Water Resources and Industry, 4, pp. 51-67.

. Manning B. A., Goldberg S. (1997), Adsorption and stability of As (III) at the clay mineral-water interface, Environ. Sci. Technol., 31, pp. 2005-2011.

. Manning B.A., Fendorf S.E., Bostick B., Suarez D.L. (2002), Arsenic(III) Oxidation and Arsenic(V) Adsorption Reactions on Synthetic Birnessite, Environ. Sci. Technol., 36, pp. 976-981

. Mohapatra M., Hariprasad D., Mohapatra L., Anand S., Mishra B.K. (2012), Mg-doped nano ferrihydrite—A new adsorbent for fluoride removal from aqueous solutions, Applied Surface Science, 258 (10), pp. 4228-4236.

. Nesbitt H. W., Canning G. W., Bancroft G. M. (1998), XPS study of reductive dissolution of 7Å-birnessite by H3AsO3, with constraints on reaction mechanism, Geochimica et Cosmochimica Acta, 62 (12), pp. 2097-2110.

. Oscarson D.W., Huang P.M., LiawW.K., HammerU.T. (1983), Kinetics of oxidation of arsenite by various manganese dioxides, Soil Sci. Soc. Am. J, 47, pp. 644-648.

. Reza A.P.S., Hasan A.M., Ahmad J.J., Zohreh F., Jafar T. (2015), The Effect of Acid and Thermal Treatment on a Natural Diatomite Chemistry Journal 1(4), pp. 144-150

. Samsuri A.W., Sadegh-Zadeh F., Seh-Bardan B.J. (2013), Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk, Journal of Environmental Chemical Engineering, 1 (4), pp. 981-988.

. Sastre de Vicente M.E. (2004), The Concept of Ionic Strength Eighty Years after Its Introduction in Chemistry, Journal of Chemical Education, 81 (5), pp. 750-753.

. Sherman D.M., Randall S.R. (2003), Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy, Geochimica et Cosmochimica Acta, 67 (22), pp. 4223-4230.

. Su C., Puls R.W. (2001), Arsenate and arsenite removal by zerovalent iron: Effects of phosphate, silicate, carbonate, borate, sulfate,chromate, molybdate, and nitrate, relative to chloride, Environ. Sci. Technol., 35, pp. 4562-4568.

. Szlachta M., Gerda V., Chubar N. (2012), Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide Journal of Colloid and Interface Science, 365, pp. 213-112.

. Tosun I. (2012), Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models, Int J Environ Res Public Health, 9 (3), pp. 970-84.

. Tuna A.O.A., Ozdemir E., Simsek E.B., Beker U. (2013), Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: impact ofexperimental conditions, Chem. Eng. J. , 223, pp. 116-128.

. Wang S., Mulligan C.N. (2006), Occurrence of arsenic contamination in Canada: Sources, behavior and distribution, Science of the Total Environment, 366, pp. 701-721.

. Xu R., Wang Y., Tiwari D., Wang H. (2009), Effect of ionic strength on adsorption of As(III) and As(V) on variable charge soils, Journal of Environmental Sciences, 21 (7), pp. 927-932.

. Zeng H., Fisher B., Giammar D.E. (2008), Individual and Competitive Adsorption of Arsenate and Phosphate To a High-Surface-Area Iron Oxide-Based Sorbent, Environ. Sci. Technol, 42, pp. 147-152.

. Zhang G., Qu J., Liu H., Liu R., Wu R. (2007), Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal, Wat. Res., 41 (9), pp. 1921-8.

. Zhu H., Jia J., Wu X., Wang H. (2009), Removal of arsenic from water by supported nano zero-valent iron on activated carbon, J.Hazard. Mater., 172 (2-3), pp. 1591–1596.

. Zhang F.S., Itoh H. (2005), Iron oxide-loaded slag for arsenic removal from aqueous system, Chemosphere, 60 (3), pp. 319-25.

Published

2016-09-30

Issue

Section

Khoa học Tự Nhiên