Effects of mixed microorganisms cultures in controlling harmful insects on vegetables
PDF (Vietnamese)

Keywords

harmful insects
microbial products for insect control
Helicoverpa armigera
Liriomyza sativae
Empoasca flavescens
mixed culture chế phẩm sinh học diệt côn trùng
hỗn hợp vi sinh vật
sâu hại rau
sâu xanh
giòi đục lá
rầy xanh

Abstract

In Vietnam, the safe production of vegetables is now a high demand and requires the use of biological agents to replace chemicals, especially for insect control. Microbial products for insect control, which have therefore far been developed, are mainly single-culture-based; hence, their efficacious spectrums are narrow. In this study, we created several mixed cultures of Bacillus thuringiensis strain PAM32 (Bt), Metarhizium anisopliae strain PAM23, and Beauveria bassiana strain PAM21 and investigated their potential in controlling some harmful insects on vegetables and their possible interactions in such activities. The 0.9% NaCl suspensions of the mixed cultures displayed high insecticidal efficacies and synergistic effects against Helicoverpa armigera (in the laboratory, causing an 85% death rate after three days) and Liriomyza sativae (in the field, reducing 70% of affected tomato leaves). The presence of Bt in the mixtures could enhance the insecticidal efficiency (up to 50%), even to Empoasca flavescens in the field test. The results indicate that using mixed microbial cultures can exploit synergistic interactions and complementary interactions among their individuals, thus improving the overall insecticidal effect.

https://doi.org/10.26459/hueunijard.v130i3D.6177
PDF (Vietnamese)

References

  1. Phạm Thị Thùy (2011), Thực trạng về sản xuất và ứng dụng các chế phẩm vi sinh vật để phòng trừ dịch hại cây trồng ở Việt Nam trong 20 năm qua, Trang web chính thức của Viện Khoa học Kỹ thuật Nông nghiệp miền Nam (iasvn.org).
  2. Nguyễn Văn Tuất (2006), Nghiên cứu sản xuất sử dụng thuốc sâu sinh học đa chức năng cho một số loại cây trồng bằng kỹ thuật công nghệ sinh học, Báo cáo kết quả đề tài nghiên cứu khoa học cấp Nhà nước KC.04.12, Viện Bảo vệ thực vật.
  3. Phạm Văn Ty và Vũ Nguyên Thành (2007), Công nghệ sinh học (Tập 5–Công nghệ vi sinh và môi trường), Nxb. Giáo dục, trang 107.
  4. Rajasekhar P. and P. Kalidas (2010), Mechanisms involved in the entomopathogenesis of Beauveria bassiana, Asian Journal of Environmental Science, 5(1), 65–74.
  5. Soccol C. R. et al. (2009), Development of a low cost bioprocess for endotoxin production by Bacillus thuringiensis var israelensis intended for biological control of Aedes aegypti, Brazilian Archives of Biology and Technology, 52(SPE), 121–130.
  6. Baxter S. W., Badenes-Pérez F. R., Morrison A., Vogel H., Crickmore N., Kain W. et al. (2011), Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera, Genetics, 189(2), 675–679.
  7. Peacock J. W., Schweitzer D. F., Carter J. L. and Dubois N. R. (1998), Laboratory assessment of the effects of Bacillus thuringiensis on native Lepidoptera, Environmental Entomology, 27(2), 450–457.
  8. Kim H. M., Jeong S. G., Choi I. S., Yang J. E., Lee K. H. and Kim J. et al. (2020), Mechanisms of Insecticidal Action of Metarhizium anisopliae on Adult Japanese Pine Sawyer Beetles (Monochamus alternatus), ACS Omega, 5(39), 25312–25318.
  9. Li W.-L., Bao Y.-X. and Tong Y.-H. (2014), Screening for virulent strains of Metarhizium anisopliae against Empoasca vitis, Journal of Fujian College of Forestry, 4, 8.
  10. Pu X.-Y., Feng M.-G. and Shi C.-H. (2005), Impact of three application methods on the field efficacy of a Beauveria bassiana-based mycoinsecticide against the false-eye leafhopper, Empoasca vitis (Homoptera: Cicadellidae) in the tea canopy, Crop Protection, 24(2), 167–175.
  11. Yuanbi W. C. T. (1989), INVESTIGETION ON THE CONTROL OF Empoasca flavescens WITH Beauveria bassiana AND Eryniaradicans (Eres), Journal of Southwest Agricultural University, (1), 14.
  12. Wakil W., Ghazanfar M. U., Riasat T., Qayyum M. A., Ahmed S. and Yasin M. (2013), Effects of interactions among Metarhizium anisopliae, Bacillus thuringiensis and chlorantraniliprole on the mortality and pupation of six geographically distinct Helicoverpa armigera field populations, Phytoparasitica, 41(2), 221–234.
  13. Yaroslavtseva O. N., Dubovskiy I. M., Khodyrev V. P., Duisembekov B. A., Kryukov V. Y. and Glupov V. V. (2017), Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae, Journal of Insect Physiology, 96, 14–20.
  14. Wraight S. and Ramos M. (2005), Synergistic interaction between Beauveria bassiana-and Bacillus thuringiensis tenebrionis-based biopesticides applied against field populations of Colorado potato beetle larvae, Journal of Invertebrate Pathology, 90(3), 139–150.
  15. Mwamburi L., Laing M., and Miller R. (2009), Interaction between Beauveria bassiana and Bacillus thuringiensis var. israelensis for the control of house fly larvae and adults in poultry houses, Poultry Science, 88(11), 2307–2314.