Effects of salinity on growth and development of copepod Apocyclops panamensis


Apocyclops panamensis
growth and development Apocyclops panamensis
độ mặn
sinh trưởng và phát triển


This study determines the effect of salinity on (1) growth and development; (2) body size; (3) egg-carrying rate; (4) life cycle stages of copepod Apocyclops panamensis isolated from an intensive white shrimp (Lipopenaeus vannamei) pond. The experiment was conducted in a completely randomized design with three replicates in 250 mL flasks with three salinity treatments (10, 20, 30 ‰). The copepod life cycle was determined by raising ten egg-carrying adult copepods in ten 5-mL cell culture plates (ten replicates). The results show that the growth and development rate, body size, and egg-carrying rate of Copepoda depend on salinity. The 20‰ salinity provides better results than 10 and 30‰  (p < 0.05). The total development time of the nauplius stage is about 2–3 days and lasts 9–14 days, and the egg-carrying lasts about 2–3 days. The fecundity of Apocyclops panamensis is 5,5 ± 1,05 eggs/female/day, and the reproductive span is 34,01 ± 5,77 h.



  1. Reitan, K.I. and Rainuzzo (1994), Influence of lipid composition of live feed on growth, survival and pigmentation of turbot larvae,, Aquaculture, 2, 33–48.
  2. Evoy, M.C., L.A. Naess, T. Bell, and L. J.G. (1998), Lipid and fatty acid composition of normal and malpigmented Atlantic halibut Hippoglossus hippoglossus fed enriched artemia: coparison with fry fed wild Copepoda, Aquaculture, 163, 237–250.
  3. Vũ Ngọc Út and Dương Thị Hoàng Oanh (2013),Giáo trình thực vật và động vật thủy sinh, Nxb. Đại học Cần Thơ.
  4. Chinnery, F.E. and J.A. Williams (2004), The influence of temperature and Salinity on Acartia (Copepoda: Calanoida) nauplii survival, Marine Biology, 145, 733–738.
  5. Raju, P. (2012), Laboratory Culture of Marine Cyclopoid Copepod Oithona rigida Giesbrecht, , Indian Journal Of Natural Sciences, 3(14), 1177–1181.
  6. Ambler, J. W., J.E. Cloern, and A. Hutchinson (1985), Seasonal cycles of zooplankton from San Francisco Bay, Hydrobiologia, 129, 177–197.
  7. Li, C., L. X., H. X., and G. B. (2008), Effects of temperature, salinity, pH, and light on filtering and grazing rates of a calanoid copepoda (Schmackeria dubia), The Scientific World JOURNAL, 8, 1219–1227.
  8. Cruz-Rosado, L., W. Contreras-Sánchez, U. Hernández-Vidal, J. Pérez-Urbiola, and M. García (2020), Population growth of a generational cohort of the copepod Apocyclops panamensis, Ecosistemas y Recursos Agropecuarios.
  9. Pan, Y.-J., A. Souissi, S. Souissi, and J.-S. Hwang (2016), Effects of salinity on the reproductive performance of Apocyclops royi (Copepoda, Cyclopoida), Journal of Experimental Marine Biology and Ecology, 475, 108–113.
  10. Renz, J. and H.-J. Hirche (2005), Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: I. Seasonal and spatial distribution, Marine Biology, 148, 567–580.
  11. Lindley, L.C. and R.P. Phelps (2009), Production and Collection of Copepod Nauplii from Brackish Water Ponds, Journal of Applied Aquaculture, 21(2), 96–109.
  12. Goswami, S.C. (2004), Zooplankton Methodology, Collection & Identification – a field Manual, National Institute of Oceanography.
  13. Nguyễn Văn Khôi (2001), Động vật chí Việt Nam, Phân lớp chân mái chèo – Copepoda, Biển, Nxb. Khoa học và Kỹ thuật.
  14. Cao Văn Hạnh (2003), Ảnh hưởng của các loại tảo đơn bào và chế độ cho ăn lên sinh trưởng và phát triển của Copepoda sử dụng trong ương cá biển, Viện Nghiên cứu Nuôi trồng thủy sản 1: Viện Nghiên cứu Nuôi trồng thủy sản 1, 330–337.
  15. Noor, N.S.M., A. Arshad, S.M.N. Amin, and M.S. Kamarudin (2018), Effect of Salinity, Temperature, Light Intensity and Photoperiod on Reproduction, Larval Development and Life Cycle of Cyclopoid Copepod, Oithona simplex (Farran, 1913), Asian Journal of Biological Sciences, 11(1), 33–40.
  16. War, M. (2010), Culture of zooplankton for rearing fish larvae, Poll Res. , 29(2), 91–93.
  17. Altaff, K. and A. Janakiraman (2015), Effect of temperature on mass culture of three species of zooplankton, Brachionus plicatilis, Ceriodaphnia reticulata and Apocyclops dengizicus, International Journal of Fisheries and Aquatic Studies, 2(4), 49–53.
  18. Raju, P., M. Kathiresan, S. Ananth, R. Nandakumar, T. Jayalakshmi, P. Ananthi, A. Shenbaga Devi, and P. Santhanam (2012), Laboratory Culture of Marine Cyclopoid Copepod Oithona rigida Giesbrecht, Indian Journal Of Natural Sciences, 3(14), 0976–0997.
  19. Assavaaree, M., Atsushi Hagiwara, Takayuki Kogane, and Misao Arimoto (2003), Effect of temperature on resting egg formation of the tropical SS‐type rotifer Brachionus rotundiformis Tschugunoff, Fisheries Science, 69(3), 520–528.
  20. Santhanam , P. and P. Perumal (2012), Effect of temperature, salinity and algal food concentration on population density growth and survival of marine copepod Oithona rigida Giesbrecht, Indian Journal of Geo - Marine Sciences 41(4), 369–376.
  21. Vũ Ngọc Út and Huỳnh Phước Vinh (2014), Một số đặc điểm của Copepoda Schmackeria dubia, Tạp chí Khoa học Trường Đại học Cần Thơ, (2), 292–299
  22. Ianora, A. (2005), Birth control effects of diatoms on copepod reproduction: implications for aquaculture studies, in Copepods in Aquaculture, Blackwell Scientific Publications Ltd Melbourne, 31–48.
  23. Ianora, A., s. Poulet, and A. Miralto (2003), The effects of diatoms on copepod reproduction: A review, Phycologia, 42, 351–363.
  24. Brugnano, C., A. Granata, L. Guglielmo, R. Minutoli, and G. Zagami (2014), Fecundity and development of the bentho-pelagic copepod Pseudocyclops umbraticus: Effects of temperature, Aquatic Biology, 20, 245–254.
  25. Golez, M.S.N., T. Takahashi, T. Ishimaru, and A. Ohno (2004), Post-embryonic development and reproduction of Pseudodiaptomus annandalei (Copepoda: Calanoida), Plankton Biology and Ecology, 51, 15–25.