Polymorphisms of leptin and thyroglobulin genes related to carcass and meat quality traits in Senepol × lai Brahman crossbred cows in Thua Thien Hue province
PDF (Vietnamese)

Keywords

crossbred cow
PCR-RFLP
polymorphism
leptin gene
Senepol
thyroglobulin gene bò lai
đa hình
gen leptin
gen thyroglobulin
PCR-RFLP
Senepol

Abstract

This study was conducted to evaluate the polymorphisms in the intron 2 of leptin (LEP) gene (g.1926C>T) and in the 5’UTR of thyroglobulin (TG) gene (g.422C>T) in Senepol × lai Brahman crossbred cows raised in Thua Thien Hue province. The results of evaluating LEP and TG gene polymorphisms on 30 DNA samples with the PCR-RFLP technique show that the LEP/Sau3AI gene is polymorphic in the Senepol × lai Brahman crossbred cows, with the A allele related to high production and reproduction traits as the dominant allele (0.92). Five over 30 cows carried allele B related to high-fat yield percentage, and all were raised in Dien Mon commune. In contrast, all 30 studied cows carried heterozygous TG/PsuI genotype (CT). More DNA samples should be analysed to confirm the polymorphism of the TG5/PsuI gene in this crossbred cattle in Thua Thien Hue province, and further selection is needed to increase the frequency of the T allele related to a high marbling score of beef. These results are informative for further breeding of Senepol × lai Brahman crossbred cows.

https://doi.org/10.26459/hueunijard.v132i3B.7157
PDF (Vietnamese)

References

  1. Don, N. V., Oanh, N. C. and Aduli, M. E. O. (2021), Main regulatory factors of marbling level in beef cattle, Veterinary and Animal Science, 14, 100219.
  2. Chen, D., Li, W., Du, M., Cao, B. (2019), Adipogenesis, fibrogenesis and myogenesis related gene expression in longissimus muscle of high and low marbling beef cattle, Livestock Science, 229, 188–193.
  3. Hocquette, J. F., Gondret, F., Baeza, E., Medale, F., Jurie, C., Pethick, D. W. (2010), Intramuscular fat content in meat-producing animals: development, genetic and nutritional control and identification of putative markers, Animal, 4, 303–319.
  4. Wang, Y. H., Bower, N., Reverter, A., Tan, S. H., De Jager, N., Wang, R., McWilliam, S. M., Café, L. M., Greenwood, P. L., Lehnert, S. A. (2009), Gene expression patterns during intramuscular fat development in cattle, Journal of Animal Science, 87, 119–130.
  5. Javanmard, A., Mohammadabadi, M. R., Zarrigabayi, G. E., Gharahedaghi, A. A., Nassiry, M. R., Javadmansh, A. and Asadzadeh, N. (2008), Polymorphism within the intron region of the bovine leptin gene in Iranian Sarabi cattle (Iranian Bos taurus), Russian Journal of Genetics, 44(4), 495–497.
  6. Putra, W. P. B., Anwar, S., Said, S., Indratno, S. A. A. and Wulandari, P. (2019), Genetic characterization of Thyroglobulin and Leptin genes in Pasundan cattle at West Java, Buletin Peternakan, 43(1), 1–7.
  7. Moravčíková, N., Trakovická, A., Kasarda, R. (2012), Polymorphism within the intron region of the bovine leptin gene in Slovak Pinzgau cattle, Scientific Papers: Animal Science and Biotechnologies, 45(1), 211–214.
  8. Trakovicka, A., Nina, M. and Radovan, K. (2013), Genetic polymorphism of leptin and leptin receptor genes in relation with production and reproduction traits in cattle, Acta Biochimica Polonica, 60, 783–787.
  9. Ferchichi, M. A., Bayrem, J., Sihem, A., Abderrahmane, B. G. and Boulbaba, R. (2018), Effect of leptin genetic polymorphism on lameness prevalence in Tunisian Holstein cows, Archives Animal Breeding, 61, 305–310.
  10. Moussavi, A. H., Ahouei, M., Nassiry, M. R. and Javadmanesh, A. (2006), Association of leptin polymorphism with production, reproduction and plasma glucose level in Iranian Holstein cattle, Asian-Australasian Journal of Animal Sciences, 19, 627–631.
  11. Oner, Y., Onur, Y., Hayrettin, O., Nezih, A., Gulnaz, Y. M. and Abdulkadir, K. (2017), Associations between GH, PRL, STAT5A, OPN, Pit-1, LEP and FGF2 genes polymorphisms and fertility in Holstein Friesian heifers, Kafkas Universitesi Veteriner Fakultesi Dergisi, 23, 527–534.
  12. Almeida, S. E. M., Almeida, E. A., Moraes, J. F. C. and Weimer, T. A. (2003), Molecular markers in LEP gene and reproductive performance of beef cattle, Journal of Animal Breeding and Genetics, 120, 106–113.
  13. Hussain, D. A., Abboud, Z. H., Abdulameer, T. A. (2017), Genetic structure analysis of leptin gene/ Sau3AI and its relationship with body weigh in Iraqi and Holstein Frisian cows population (Comparative study), IOSR Journal of Pharmacy and Biological Sciences, 12(3), 10–13.
  14. Nobari, K., Shokoufe, G., Mohammdad, R. N., Mojtaba, T. and Eisa, J. (2010), Relationship between leptin gene polymorphism with economical traits in Iranian Sistani and Brown Swiss cows, Journal of Animal Veterinary Advances, 9, 2807–2810.
  15. Sedykh, T. A., Kalashnikova, L. A., Gusev, I. V., Pavlova, I. Y., Gizatullin, R. S. and Dolmatova, I. Y. (2016), Influence of TG5 and LEP gene polymorphism on quantitative and qualitative meat composition in beef calves, Iraqi Journal of Veterinary Sciences, 30, 41–48.
  16. Liefers, S. C., te Pas, M. F. W., Veerkamp, R. F. and van der Lende, T. (2002), Associations between Leptin gene polymorphisms and production, live weight, energy balance, feed intake and fertility in Holstein heifers, Journal of Dairy Science, 85, 1633–1638.
  17. Baas, F., van Ommen, G. J., Bikker, H., Arnberg, A. C. and de Vijlder, J. J. (1986), The human thyroglobulin gene is over 300 kb long and contains introns of up to 64 kb, Nucleic Acids Research, 14, 5171–5186.
  18. Anwar, S., Putra, A. C., Wulandari, A. S., Agung, P. P., Putra, W. P. B. and Said, S. (2017), Genetic polymorphism analysis of 5' untranslated region of thyroglobulin gene in Bali cattle (Bos javanicus) from three different regions of Indonesia, Journal of the Indonesian Tropical Animal Agriculture, 42(3), 175–184, DOI: 10.14710/jitaa.42.3.175-184.
  19. Barendse, W. J. (1999), Assessing lipid metabolism, International Patent Application WO9923248 US6383751 (PCT/AU98/00882).
  20. Barendse, W. J., Bunch, R. J., Thomas, M. B., Armitage, S. M., Baud, S., Donaldson, N. (2004), The TG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle, Australian Journal of Experimental agriculture, 44(7), 669–674.
  21. Casas, E., White, S. N., Riley, D. G., Smith, T. P., Brenneman, R. A., Olson, T. A., Johnson, D. D., Coleman, S. W., Bennett, G. L., Chase, C. C. Jr. (2005), Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle, Journal of Animal Science, 83(1), 13–19.
  22. Gan, Q. F., Zhang, L. P., Li, J. Y., Hou, G. Y., Li, H. D., Gao, X., Ren, H. Y., Chen, J. B. and Xu, S. Z. (2008), Association analysis of thyroglobulin gene variants with carcass and meat quality traits in beef cattle, Journal of Applied Genetics, 49, 251–255.
  23. Mears, G. J., Mir, P. S., Bailey, D. R. C. and Jones, S. D. M. (2001), Effect of Wagyu genetics on marbling, backfat and circulating hormones in cattle, Canadian Journal of Animal Science, 81, 65–73.
  24. Moore, S. S., Li, C., Basarab, J., Snelling, W. M., Kneeland, J., Murdoch, B., Hansen, C. and Benkel, B. (2003), Fine mapping of quantitative trait loci and assessment of positional candidate genes for backfat on bovine chromosome 14 in a commercial line of Bos taurus, Journal of Animal Science, 81, 1919–1925.
  25. Sở Nông nghiệp và Phát triển nông thôn Thừa Thiên Huế (2021), Triển vọng của giống bò lai Senepol nuôi trong nông hộ ở Thừa Thiên Huế. Link: https://snnptnt.thuathienhue.gov.vn/?gd=7&cn=159&tc=22407, Ngày truy cập: 01/04/2021.
  26. Healy, P. J., Dennis, J. A., Moule, J. F. (1995), Use of hair root as a source of DNA for the detection of heterozygotes for recessive defects in cattle, Australian Veterinary Journal, 72(10), 392.
  27. Dolmatova, I., Sedykh, T., Valitov, F., Gizatullin, R., Khaziev, D., Kharlamov, A. (2020), Effect of the bovine TG5 gene polymorphism on milk- and meat-producing ability, Veterinary World, 13(10), 2046–2052.
  28. Nkrumah, J. D., Li, C., Yu, J., Hansen, C., Keisler, D. H., Moore, S. S. (2005), Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior and measures of carcass merit, Journal of Animal Science, 83, 20–8.
  29. Sharifzadeh, A., Doosti, A. and Moshkelani, M. (2010), Genetic polymorphism at the leptin gene in Iranian Holstein cattle by PCR-RFLP, Journal of Animal and Veterinary Advances, 9(10), 1420–1422.
  30. Jecminkova, K., Kyselova, J., Ahmed, S. A., Zavadilov, L., Matlova, V. and Majzlik, I. (2016), Leptin Promoter Region Genotype Frequencies and Its Variability in the Czech Fleckvieh Cattle, Scientia Agriculturae Bohemica, 47(2), 54–59.
  31. Sadeghi, M., Babak, M. M. S., Rahimi, G. and Javaremi, A. N. (2008), Effect of leptin gene polymorphism on the breeding value of milk production traits in Iranian Holstein, Animal, 2, 999–1002.
  32. Nassiry, M. R., Shahroudi, F. E., Moussavi, A. H., Sadeghi, B. and Javadmanesh, A. (2008), The diversity of leptin gene in İranian native, Holstein and Brown Swiss cattle, South African Journal of Animal Science, 7(15), 2685–2687.
  33. Singh, U., Kumar, S., Deb, R., Mann, S. and Sharma, A. (2013), Genotypic profiling of coding region of leptin gene and their association studies on reproductive and milk production traits in Sahiwal and Frieswal cattle of India, South African Journal of Animal Science, 12(42), 6140–6146.
  34. Tomka, J., Vašíčková, K., Oravcová, M., Bauer, M., Huba, J., Vašíček, D., Peškovičová, D. (2016), Effects of polymorphisms in DGAT1 and LEP genes on milk traits in Holstein primiparous cows, Mljekarstvo, 66(2), 122–128, Doi: 10.15567/mljekarstvo.2016.0204.
  35. Yang, D., Chen, H., Wang, X., Tian, Z., Tang, L., Zhang, Z. and Zhang, L. (2007), Association of polymorphisms of leptin gene with body weight and body sizes indexes in Chinese indigenous cattle, Journal of Genetics and Genomics, (34), 400–5.
  36. Thaller, G., Kuhn, C., Winter, A., Ewald, G., Bellmann, O., Wegner, J., Zuhlke, H. and Fries, R. (2003), DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle, Animal Genetics, 34, 354–357.
  37. Burrell, D. N., Moser, G. H. D., Hetzel, J. and Mizoguchi, Y. S. S. (2004), Meta Analysis Confirms Associations of the TG5 Thyroglobulin Polymorphism with Marbling in Beef Cattle, 29th International Conference on Animal Genetics, ISAG, Tokyo.