Effect of the replacement of natural material and some factors on gamma-aminobutyric acid biosynthesis with Pediococcus acidilactici TC7 strain


Gamma - aminobutyric acid
Pediococcus acidilactici TC7
quá trình lên men
nguyên liệu tự nhiên
điều kiện nuôi cấy Gamma-aaminobutyric acid
Pediococcus acidilactici TC7
natural material
culture condition


Gamma-aminobutyric acid (GABA), an inhibitor of neurotransmitters, is biosynthesized by lactic acid bacteria (LAB), a group of bacteria believed to be the safest in food and nutrition. With the aim of reducing the cost of GABA production, we used some natural materials and changed the culture conditions affecting the biosynthesis of GABA with the Pediococcus acidilactici TC7 strain. The GABA content in the culture medium was determined by using high-performance liquid chromatography (HPLC). The results show that the GABA content reached its highest value of 30.784 ± 0.104 mM when the Pediococcus acidilactici TC7 strain was cultured in the medium under suitable conditions. Accordingly, the medium is MRS supplemented with 50 mL of red dragon fruit juice and 50 mL of cow's milk solution; the initial pH of the medium is 6, and the GABA-producing fermentation is carried out at 40 °C for 72 hours.



  1. Matejcekova, Z., Liptakova, D., Valik, L. (2017), Functional probiotic products based on fermented buckwheat with Lactobacillus rhamnosus, LWT Food Science and Technology, 81, 35–41.
  2. Manini, F., Casiraghi, M. C., Poutanen, K., Brasca, M., Erba, D., Plumed-Ferrer, C. (2016), Characterization of lactic acid bacteria isolated from wheat bran sourdough, LWT Food Science and Technology, 66, 275–283.
  3. Adesulu-Dahunsi, A. T., Jeyaram, K., Sanni, A. I. (2018), Probiotic and technological properties of exopolysaccharide producing lactic acid bacteria isolated from cereal-based nigerian fermented food products, Food Control, 92, 225–231.
  4. Szutowska, J. (2020), Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: a systematic literature review, European Food Research and Technology, 246(3), 357–372.
  5. Kim, D. H., Dasagrandhi, C., Park, S. K., Eom, S. H., Huh, M. K., Mok, J. S., Kim, Y. M. (2018), Optimization of gamma-aminobutyric acid production using sea tangle extract by lactic acid bacterial fermentation, LWT Food Science and Technology, 90, 636–642.
  6. Rashmi, D., Zanan, R., John, S., Khandagale, K., Nadaf, A. (2018), γ- Aminobutyric Acid (GABA): Biosynthesis, Role, Commercial Production and Applications, Studies in Natural Products Chemistry, Elsevier, 57, 413–452.
  7. Cui, Y., Miao, K., Niyaphorn, S., Qu, X. (2020), Production of gamma- aminobutyric acid from lactic acid bacteria: A systematic review, International Journal of Molecular Sciences, 21(3), 1–21.
  8. Diana, M., Quilez, J., Rafecas, M. (2014), Gamma-aminobutyric acid as a bioactive compound in foods: A review, Journal of Functional Foods, 10, 407–420.
  9. Yunes, R. A., Poluektova, E. U., Dyachkova, M. S., Klimina, K. M., Kovtun, A. S., Averina, O. V., Orlova, V. S., and Danilenko, V. N. (2016), GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota, Anaerobe, 42, 197–204.
  10. Sanchart, C., Rattanaporn, O., Haltrich, D., Phukpattaranont, P., and Maneerat, S. (2017), Enhancement of gamma-aminobutyric acid (GABA) levels using an autochthonous Lactobacillus futsaii CS3 as starter culture in Thai fermented shrimp (Kung-Som), World Journal of Microbiology and Biotechnology, 33(8), 152.
  11. De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960), A Medium for the Cultivation of Lactobacilli, Journal of Applied Bacteriology, 23(1), 130–135.
  12. Trần Thanh Quỳnh Anh, Đỗ Thị Bích Thuỷ (2023), Ảnh hưởng của mật độ tế bào ban đầu và thành phần môi trường đến khả năng sinh tổng hợp Gamma - aminobutyric acid bởi chủng Pediococcus acidilactici TC7, Tạp chí khoa học và công nghệ nông nghiệp Việt Nam, 1, 76–82.
  13. Yen, T. T., Quan, T. H., Nhung, H. T. H., Tram, G. P. N., Karnjanapratum, S., & Benjakul, S. (2022), Development of antioxidative red dragon fruit bar by using response surface methodology for formulation optimization, Applied Food Research, 2(2), 100173.
  14. Toupal, S., & Coşansu, S. (2023), Antioxidant and antimicrobial properties of freeze-dried banana and watermelon peel powders, Food and Humanity, 1(7), 607–613.
  15. Edith Marius, F. K., Pierre Marie, K., Blandine, M., Laverdure, T. P., Ulrich Daquain, F. T., & François, Z. N. (2023), Development of a non-dairy probiotic beverage based on sorrel and pineapple juices using Lacticaseibacillus paracasei 62L, Journal of Agriculture and Food Research, 14(2), 100688.
  16. Norouzi, M., Alamouti, A. A., Foroudi, F., Ahmadi, F., & Beiranvand, H. (2021), Performance of Holstein calves receiving increased nutrient intake through the addition of skim milk or milk replacer powder to the whole milk, Animal Feed Science and Technology, 278(6), 115013.
  17. Li, Y. ting, Chen, M. shun, Deng, L. zhen, Liang, Y. zhen, Liu, Y. kun, Liu, W., Chen, J., & Liu, C. me (2021), Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering, Journal of Food Engineering, 291, 110228.
  18. Syu, K. Y., Lin C. L., Huang, H. C., Lin, J. K. (2008), Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography, Journal of Agricultural and Food Chemistry, 56(17), 7637–7643.
  19. Beal, J., Farny, N. G., Haddock-Angelli, T., Selvarajah, V., Baldwin, G. S., Buckley-Taylor, R., Gershater, M., Kiga, D., Marken, J., Sanchania, V., Sison, A., & Workman, C. T. (2020), Robust estimation of bacterial cell count from optical density, Communications Biology, 3(1), 512.
  20. Kim, J. Y., Lee, M. Y., Ji, G. E., Lee, Y. S. and Hwang, K. T. (2009), Production of g-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100, International Journal of Food Microbiology, 130(1), 12–16.
  21. Liao, W., Wang, C., Shyu, Y., Yu, R., Ho, K. (2013), Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria, Journal of Functional Foods, 5(3), 1108–1115.
  22. Zareie, Z., Tabatabaei Yazdi, F., Mortazavi, S. A. (2019), Optimization of gamma-aminobutyric acid production in a model system containing soy protein and inulin by Lactobacillus brevis fermentation, Journal of Food Measurement and Characterization, 13(4), 2626–2636.
  23. Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H., and Kimura, T. (2005), Production of g-amino- butyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods, Food Microbiology, 22(6), 497–504.
  24. Shin, S. -M., Kim, H., Joo, Y., Lee, S. -J., Lee, Y. -J., Lee, S. J. and Lee, D. -W. (2014), Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity, Journal of Agricultural and Food Chemistry, 62(50), 12186–12193.
  25. Liu, W., Li, H., Liu, L., Ko, K. and Kim, I. (2021), Screening of gamma-aminobutyric acid-producing lactic acid bacteria and the characteristic of glutamate decarboxylase from Levilactobacillus brevis F109-MD3 isolated from kimchi, Journal of Applied Microbiology, 132(3), 1967–1977.
  26. Villegas, J. M., Brown, L., Savoy de Giori, G., and Hebert, E. M. (2016), Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough, LWT - Food Science and Technology, 67, 22–26.
  27. Lin, Q. (2013), Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production, Brazilian J Microbiol, 44(1), 183–187.
  28. Sarasa, S. B., Mahendran, R., Muthusamy, G., Thankappan, B., Selta D. R. F., Angayarkanni J. (2020), A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): Its production and role in microbes, Curr Microbiol, 77(4), 534–544.