Decomposition of Acacia’s bark by using biological inoculants

Keywords

chế phẩm sinh học
phân hủy
vỏ keo inoculants
decompose
acacia bark

Abstract

We evaluated the capability to degrade acacia bark with five inoculants (Inoculant EM, Inoculant Emuniv, Inoculant Emic, Inoculant AT-YTB, and Inoculant Bio) in the laboratory (45 °C, 60% humidity, 1 g of product/1 kg of acacia bark) to select the ones suitable to composting. The experiment was arranged in a completely randomized design with six treatments and three replications per treatment. The indicators were monitored at the time before incubation and on the 10th, 20th, and 30th day after incubation. The results show that, on the 30th day, the lignin and cellulose contents of the acacia’s bark in all treatments decreased by 7.8–10% and 6.65–8.45%. The content of lignin (13.8%), cellulose (22.5%), substances soluble in hot water and alcohol in treatment with Inoculant Emic and the content of cellulose in treatment with Inoculant Bio (22.7%) are statistically different compared with the control. All inoculants have a good effect on the moisture and pH of acacia’s bark. The total nitrogen content in all treatments tends to increase slightly from 0.28 to 0.38%. The content of OC and C/N tends to decrease gradually over time (by 16.46–17.56% and 10.2 - 14.2%). Under laboratory conditions, the Emic inoculant and the Sagi Bio inoculant have a good effect on the decomposition of acacia’s bark during 30 days of incubation.

https://doi.org/10.26459/hueunijard.v132i3D.7254

References

  1. Tạ Thị Phương Hoa, Vũ Đình Thịnh, Vũ Huy Đại (2013), Thành phần hóa học và tính chất vật lý chủ yếu của vỏ cây tai tượng, Tạp chí Nông nghiệp và Phát triển Nông thôn, kỳ 2, tháng 11 năm 2013, 117–120.
  2. Robert, A. (1995), Degradation of the lignomellulose complex in wood, Canadian Journal of Botany, 73, 999–1010.
  3. Số liệu thống kê của Tổng cục lâm nghiệp (2020), Tình hình sản xuất cây keo.
  4. Nguyễn Trọng Nhân, Nguyễn Đình Hợi (2005), Nghiên cứu xác định đặc điểm cây gỗ Keo tai tượng, Keo lá tràm, Keo lai ở Đông Hà Quảng trị, Viện Khoa học Lâm nghiệp Việt Nam.
  5. Djarwanto and Tachibana, S. (2010), Decomposition of lignin and holomellulose on Acacia mangium leaves and twigs by six fungal isolates from nature, Pakistan Jounal of Biological and Sciences, 604–609.
  6. International Tropical Timber Organization (ITTO), Yokohama, Japan (2004), Report on Organic Fertilizer from Acacia mangium Bark, ITTO Project PD No. 58/99 Rev. 1(I) SEAMEO BIOTROP Bogor, Indonesia, 17–31.
  7. Lê Văn Tri (2016), Xử lý vỏ cây keo bằng chế phẩm sinh học để làm nguyên liệu sản xuất phân bón hữu cơ vi sinh phục vụ cho nhu cầu chăm sóc cây nông lâm nghiệp, Báo cáo tổng kết đề tài cấp cơ sở của Sở Khoa học công nghệ Hòa Bình.
  8. Komilis, D. P., Ham, R. K. (2003), The effect of lignin and sugars to the aerobic decomposition of solid wastes, Waste Manage, 23, 419–423.
  9. Dekker, R. F. H., Barbosa, A. M. and Sargent, K. (2002), The effect of lignin-related compounds on the growth and production of laccases by the ascomycete, Botryosphaeria sp. Enz. Microbial, Technol., 30, 374–380.
  10. Tuomela, M., Vikman, M., Hatakka, A. and Itavaara, M. (2000), Biodegradation of lignin in a compost environment: A review, Bioresour, Technol., 72, 169–183.
  11. Osono, T., Fukasawa, Y. and Takeda, H. (2003), Roles of diverse fungi in larch needle –litter decOMposition, Mycologia, 95, 820–826.
  12. Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., Cegarra, J., Mechichi, T. (2012), Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inomulation on the compost maturity, Chemosphere, 88, 677–682.
  13. Hubbe, M. A., Nazhad, M., Sanchez, C. (2010), Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments, BioResources, 5, 2808–2854.
  14. Golueke, C. G. (1992), Bacteriology of composting, Biomycle, 33, 55–57.
  15. Golueke, C. G. (1991), Principles of composting. In: The Staff of Biomycle Journal of Waste Recycling, The Art and Science of Composting, The JG Press Inc., Pennsylvania, USA, 14–27.
  16. He, X. S., Xi, B. D., Jiang, Y. H., He, L. S., Li, D., Pan, H. W., Bai, S. G. (2013), Structural transformation study of water-extractable organic matter during the industrial composting of cattle manure, Micromhem. J., 106, 160–166.
  17. Sundberg, C., Jönsson, H. (2008), Higher pH and faster decomposition in biowaste composting by increased aeration, Waste Manage, (Oxford) 28(3), 518–526. https://doi.org/10.1016/j.wasman.2007.01.011.
  18. Crawford, J. H. (1983), Composting of agricultural wastes- a review, Promess Biomhem, 18, 14–18.
  19. Paatero, J., Lehtokari, M., Kemppainen, E. (1984), Kompostointi, WSOY, Juva (in Finnish).
  20. Belyaeva, O. N., Haynes, R. J. (2009), Chemical, microbial and physical properties of manufactured soils produced by co-cOMposting municipal green waste with coal fly ash. Bioresour, Technol, 100(21), 5203–5209. https://doi.org/10.1016/j. biortech.2009.05.032.
  21. Belyaeva, O. N., Haynes, R. J., Sturm, E. C. (2012), Chemical, physical and microbial properties and microbial diversity in manufactured soils produced from comomposting green waste and biosolids, Waste Manage, (Oxford) 32(12), 2248–2257. https://doi.org/10.1016/j.wasman.2012.05.034.
  22. Zhang, L., Sun, X. (2014), Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biomhar, Bioresour.
  23. Zhang, L., Sun, X. (2017), Addition of seaweed and bentonite accelerates the twostage composting of green waste, Bioresour, Technol, 233, 116–126. https://doi. org/10.1016/j.biortech.2017.02.073.
  24. Beck-Friis, B., Smårs, S., Jönsson, H., Eklind, Y. & Kirchmann, H. (2003), Composting of source-separated household organics at different oxygen levels: Gaining an understanding of the emission dynamics, COMpost Science & Utilization, 11, 41–50.
  25. Reyes-Torres, M., Oviedo-Omaña, E.R., DOMinguez, I., Komilis, D., Sánchez, A. (2018), A systematic review on the cOMposting of green waste: Feedstomk quality and optimization strategies, Waste Management, 77, 486–4.
  26. Epstein, E. (2011), Industrial Composting: Environmental Engineering and Facilities Management, CRC, Tailor & Francis Group, Press, Boma Raton, 314.