Effects of probiotics containing Pediococcus pentosaceus on growth rate, feed efficiency and digestive enzymes of rabbitfish (Siganus guttatus, Bloch 1787)

Keywords

digestive enzymes
probiotics
P. pentosaceus
growth
rabbitfish (Siganus guttatus) cá dìa (Siganus guttatus)
enzyme tiêu hóa
probiotics
P. pentosacceus
sinh trưởng

Abstract

This study was conducted to evaluate the effects of Pediococcus pentacocceus supplemented-diets on growth rate, feed efficiency and digestive enzyme activity of rabbitfish (Siganus guttatus, Bloch 1787). Fingerlings (size of 4.63 ± 0.41 g) were fed with three P. pentacocceus supplemented-diets at different concentrations. Specifically, fish were fed diets supplemented with P. pentosaceus at concentration of 107 CFU/g (T1), 108 CFU/g (T2), 109 CFU/g (T3) and a control diet (CT) without P. pentosaceus supplementation. Each diet was performed on 3 replicates. After 60 days of culture, the results showed that diets supplemented with P. pentosaceus significantly improved the growth rate, feed efficiency and digestive enzyme activity of Siganus guttatus compared to the control. Growth parameters such as final weight (20.06 g), weight gain (331.96%) and growth rate (0.25 g/fish/day) were found in T2 and were significant differences compared to the other treatments (p < 0.05). Similarly, digestive enzyme activities including amylase, lipase and protease were significantly increased in the group of fish fed with feed supplemented with P. pentosaceus compared to the control group. The results indicate that the supplementation of P. pentacocceus (specially, at a concentration of 108 CFU/g) into the diets notably improves the growth rate, feed efficiency, and digestive enzyme activity of rabbitfish.

https://doi.org/10.26459/hueunijard.v133i3B.7497

References

  1. Binh, M. N., Dan, V. T., Thuy, T. N. T., Tram, N. D. Q., Chat, T. T., Dan, L. V., and Agusto E. S. (2022), Effect of dietary lysine level on the growth performance of orange-spotted rabbitfish (Siganus guttatus) fingerlings, The Israeli Journal of Aquaculture – Bamidgeh, 74, 1–13. Doi.org/10.46989/001c.36170.
  2. Lê Văn Dân, Lê Đức Ngoan (2006), Nghiên cứu sự phát triển tuyến sinh dục cá Dìa (Siganus guttatus Bloch, 1787) ở vùng đầm phá Thừa Thiên Huế, Tạp chí Nông nghiệp và phát triển nông thôn, 2, 61–64.
  3. Nguyễn Tý và Hoàng Lê Thùy Lan (2018), Một số kí sinh trùng nội ngoại kí sinh trên cá Dìa (Siganus guttatus). Giai đoạn nuôi thương phẩm nuôi ở đầm phá Tam Giang, Thừa Thiên Huế, Tạp chí Khoa học, Trường Đại học sư phạm, Đại học Huế, 4(48), 75–83.
  4. Lin, W., Li, L., Chen, J., Li, D., Hou, J., Guo, H. (2018), Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella), Fish & Shellfish Immunology, 80, 540–545. Doi: 10.1016/j.fsi.2018.06.050.
  5. Zhang, Y., Ji, T., Jiang, Y., Zheng, C., Yang, H., and Liu, Q. (2022), Long-term effects of three compound probiotics on water quality, growth performances, microbiota distributions and resistance to Aeromonas veronii in crucian carp Carassius auratus gibelio, Fish and Shellfish Immunology, 120, 233–241. Doi: 10.1016/j.fsi.2021.11.036.
  6. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., and Pot, B. (2014), The International Scientific Association fof Probiotics consensus statement on the cope and ppropriate use the term probiotic, Nature Reviews Gastroenterol Hepatol, 11, 506–514.
  7. Doi: 10.1038/nrgastro.2014.66.
  8. Rengpipat, S., Rueangruklikhit, T., and Piyatiratitivorakul, S. (2008), Evaluations of lactic acid bacteria as probiotics for juvenile seabass Lates calcarifer, Aquaculture Research, 39(2), 134–143. Doi.org/10.1111/j.1365-210.2007.01864.
  9. Ringø, E. (2020), Probiotics in shellfish aquaculture, Aquaculture and Fisheries, 5, 1–27. Doi: 10.1016/j.aaf.2019.12.001.
  10. Tsai, C. Y., Chi, C. C., and Liu, C. H. (2019), The growth and apparent digestibility of white shrimp, Litopenaeus vannamei, are increased with the probiotic, Bacillus subtilis, Aquaculture Research, 50, 1475–1481. Doi: 10.1111/are.14022.
  11. Wang, Y. C., Hu, S. Y., Chiu, C. S., and Liu, C. H. (2019), Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, Litopenaeus vannamei, than single probiotic strains, Fish and Shellfish Immunology, 84, 1050–1058. Doi: 10.1016/j.fsi.2018.11.017.
  12. Dawood, M. A. O., Koshio, S., Abdel-Daim, M. M. & Van Doan, H. (2019), Probiotic application for sustainable aquaculture, Reviews in Aquaculture, 11(3), 907–924. Doi.org/10.1111/raq.12272.
  13. Giatsis, C., Sipkema, D., Ramiro-Garcia, J. (2016), Probiotic legacy effects on gut microbial assembly in tilapia larvae, Scientific Reports, 6, 33965. Doi.org/10.1038/srep33965.
  14. Kumar, V., Roy, S., Meena, D. K. & Sarkar, U. K. (2016), Application of probiotics in shrimp aquaculture: Importance, mechanisms of action, and methods of administration, Reviews in Fisheries Science & Aquaculture, 24(6), 342–368. Doi:10.1080/233084249.2016.1193841.
  15. Sánchez-Ortiz, A., Luna, G. A., Campa, C. Á., Escamilla, M. R., Flores, M. M., Mazónuástegui, J. (2015), Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming, Latin American Journal of Aquatic Research, 43, 123–136. Doi: 10.3856/vol43-isue1-fulltext-11.
  16. Barros, R. R., Carvalho, M. G., Peralta, J. M., Facklam, R. R., and Teixeira, L. M. (2001), Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources, Journal of Clinical Microbiology, 39(4), 1241–1246. Doi: 10.1128/JCM.39.4.1241-1246.2001.
  17. Thao, T. T. P., Thoa, L. T. K., Ngoc, L. M. T., Lan, T. T. P., Phuong, T. V., Truong, H. T. H., Khoo, K. S., Manickam, S., Hoa, T. T., Tram, N. D. Q., Show, P. L., and Huy, N. D. (2021), Characterization of halotolerant lactic acid bacteria Pediococcus pentosaceus HN10 and in vivo evaluation for bacterial pathogens inhibition, Chemical Engineering and Processing - Process Intensification, 168, 108576. Doi.org/10.1016/j.cep.2021.108576.
  18. Adel, M., Yeganeh, S., Dawood, M. A. O., Safari, R., and Radhakrishnan, S. (2017), Effects of Pediococcus pentosaceus supplementation on growth performance, intestinal microflora and disease resistance of white shrimp, Litopenaeus vannamei, Aquaculture Nutrition, 23(6), 1401–1409. Doi: 10.1111/anu.12515.
  19. Hong, N. T. X., Linh, N. T. H., Baruah, K., Thuy, D. T. B., Phuoc, N. N. (2022), The Combined Use of Pediococcus pentosaceus and Fructooligosaccharide Improves Growth Performance, Immune Response, and Resistance of Whiteleg Shrimp Litopenaeus vannamei Against Vibrio parahaemolyticus, Frontiers in Microbiology, 13, 826151. Doi.10.3389/fmicb.2022.
  20. Leyva-Madrigal, K. Y., Luna-González, A., Escobedo-Bonilla, C. M., Fierro-Coronado, J. A., and Maldonado-Mendoza, I. E. (2011), Screening for potential probiotic bacteria to reduce prevalence of WSSV and IHHNV in whiteleg shrimp (Litopenaeus vannamei) under experimental conditions, Aquaculture, 322, 16–22.
  21. Won, S., Hamidoghli, A., Choi, W., Bae, J., Jang, W. J., and Lee, S. (2020), Evaluation of potential probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on growth performance, immune response, gut histology and immune-telated genes in whiteleg shrimp, Litopenaeus vannamei, Microorganisms, 8, 2–15. Doi: 10.3390/microorganisms8020281.
  22. Qiuhua, Y., Yongling, L., and Zhang, M. (2019), Lactic aid bacteria, Entrorococcus faecalis G11, im proved growth performance, and immunity of mud crab (Scylla paramamosain), Fish & Shellfish Immunology, 93, 135–143. Doi.org/10.1016/j.fsi.2019.07.05.
  23. Chen-Fu, X., Hung-His, H., and Jian-Bin, H. (2013), Diet supplementation of Pedioccus pentosaceus in cobia (Rachycentron canadum) enchances growth rate, respiratory burst andresistance against photobacteriosis, Fish & Shellfish Immunology, 35(4), 1122–1128. Doi.org/10.1016/jfsi.2013.07.021.
  24. Jian-Bin, H., Yu-Chi, W., and Shau-Chi, C. (2014), Dietarry supplementation of Pediococcus pentosaceus enhances innate immunity, physiological health and resistance to vibrio anguillarum in orange-spotted grouper (Epinephelu coioides), Fish & Shellfish Immunology, 39, 196–205. Doi.org/10.1016/j.fsi.2014.05.003.
  25. Dawood, M.A.O., Koshio, S., Ishikawa, M., Yokoyama, S. (2015), Effecs of dietary inactivated Pediococcus Pentosaceus on growth performance, feed untilization and blood characteristics of red sea bream, Pagrus major juvenile, Aquaculure Nutrition, 22(4), 923–932. Doi.org/10.1111/anu12314.
  26. Ahmadifa, T., Toba, H. S., Mahmoud, A.O., and Dawood, T. (2020), The effects of dietary Pedioccus pentosaceus on growth performance, hemato-immunological parameters and digestive enzyme activities of common carp (Cyprinus carpio), Aquaculture, 516, 734656. Doi.org/10.1016/j.aquaculture.2019.734656.
  27. Ahmadifar, E., Moghadam, M.S., Dawood, M.A.O., and Hoseinifar, S.H. (2019), Lactobacillus fermentum and/or ferulic acid improved the immune responses, antioxidative defence and and resistance against Aeromonas hydrophila in common carp (Cyprinus carpio) fingerlings, Fish Shellfish Immunology, 94, 916–923. Doi: 10.1016/j.fsi.2019.10.019.
  28. Liang, G., Haocheng, H., and Dongjie, L. (2019), A New Isolate of Pediococcus pentosaceus (SL001) With Antibacterial Activity Against Fish Pathogens and Potency in Facilitating the Immunity and Growth Performance of Grass Carps, Fontiers in Microbiology, 10, 1384. Doi.org/10.3389/fmicb.2019.00138.
  29. Muhammad, Z., Anjum, M., Akhter, S., Irfan, M., Amin, S., Jamal, Y., Khalid, S., Ghazanfar, S. (2022), Effect of Lactobacillus plantarum and Pediococcus pentosaceus on the Growth Performance and Morphometry of the Genetically Improved Farmed Tilapia (Oreochromis niloticus), Zoollogical Society of Pakistan, 3, 78–82. Doi.org/10.17582/journal.pjz/20220703220755.
  30. Ghanawi, J., Roy, L., Davis, D. A., and Saoud, I. P. (2011), Effects of dietary lipid levels on growth performance of marbled spinefoot rabbitfish Siganus rivulatus, Aquaculture, 310, 395–400. Doi.org/10.1016/j.aquaculture.2010.11.012.
  31. Saoud, I., Ghanawi, J., Lebbos, N., and Davis, A. (2010), The Effect of Linseed Oil and Kelp Meal 767 in Diets on Fatty Acid Profile of Rabbitfish Siganus rivulatus, Mediterranean Aquaculture, 3(1), 36–44. Doi.10.21608/maj.2010.2673.
  32. Manh, H. N., Suong, T. T. T., Lan, P. T. P., Tram, N. D. Q. (2024), Effect of Inclusion of Fresh or dried black soldier fly larvae in Diets on Snakehead Fish’s Growth Performance and Chemical Composition (Channa sp.), Israeli Journal of Aquaculture - Bamidgeh (0792-156X), 76(1). ISSN: 0792-156X. Doi.org/10.46989/001c.92338.
  33. Cupp-Enyard, C. (2008), Sigma's non-specific protease activity assay-casein as a substrate, Journal of Visualized Experiments, 19(19). Doi:10.3791/899.
  34. Bernfeeld, P. (1988), Amylases Alpha and Beta methods in Enzymology, Methods in Enzymology, 1, 149–158. Doi.org/10.1016/0076-6879(55)01021.
  35. Eckel, R. H., Robbins, R. J. (1984), Lipoprotein lipase is produced, regulated, and functional in rat brain, Proceedings of the National Academy of Sciences, 81(23), 7604–7607. Doi.10.1073/pnas.81.23.7604.
  36. Carbone, D., Faggio, C. (2016), Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax, Fish & Shellfish Immunology, 54, 172–178. Doi: 10.1016/j.fsi.2016.04.011.
  37. Ruth, F. F., Craig, W., Denise, P., and Deborah, B. P. (2022), Ammonia in Aquatic Systems, IFSAS Extension University of Florida. Doi.org/10.32473/edis-fa031-2022.
  38. Kurdomanov, A., Sirakov, I., Stoyanova, S., Velichkova, K., Nedeva, I., and Staykov, Y. (2019), The effect of diet supplemented with Proviotic on growth, blood biochemical parameters and meat quality in rainbow trout (Oncorhynchus mykiss) cultivated in recirculation system, Aquaculture, Aquarium, Conservation & Legislation, 12(2), 404–412. http://www.bioflux.com.ro/aacl.
  39. El-Sayed, E., Baghdady, E., Gaafar, A., El-Badawi, A., Bazina, W., Al-Kareem, O., El-Hamed, N. (2022), Assessing the Influence of Dietary Pediococcus acidilactici Probiotic Supplementation in the Feed of European Sea Bass (Dicentrarchus labrax L.) (Linnaeus, 1758) on Farm Water Quality, Growth, Feed Utilization, Survival Rate, Body Composition, Blood Biochemical Parameters, and Intestinal Histology, Aquaculture Nutrition, 202, 1–11. Doi.10.1155/2022/5841220.
  40. Sokooti, R., Chelemal Dezfoulnejad, M., Javaheri Baboli, M., Askary Sary, A., and Mabudi, H. (2022), The effects of probiotics-supplemented diets on Asian sea bass (Lates calcarifer): Growth performance, microbial flora, digestive enzymes activity, serum biochemical and non-specific immune indices, Aquaculture Research, 53(16), 500–509. Doi.org/10.1111/are.16032.
  41. Okey, I. B., Gabriel, U. U., and Deekae, S. N. (2018), The Use of Synbiotics (Prebiotic and Probiotic) in Aquaculture Development, Sumerianz Journal of Biotechnology, 1(2), 51–60.
  42. Jayashree, L. (2015), Importance of water quality in mariculture, Central Marine Fisheries Research Institute, Kochi. Doi.oai:eprints.cmfri.org.in:10674.
  43. Balcazar, I., Blas, I., Ruizzarzuela, D., Cunningham, D., and Muzquiz, J. (2006), The role of probiotics in aquaculture, Veterinary Microbiology, 114(3–4), 173–186. Doi:10.1016/j.vetmic.2006.01.009.
  44. Dong, S., Li, Y., Huang, F., Lin, L., Li, Z., Li, J., Zhang, Y., Zheng, Y. (2022), Enhancing effect of Platymonas addition on water quality, microbial community diversity and shrimp performance in biofloc-based tanks for Penaeus vannamei nursery, Aquaculture, 554, 738057. Doi.org/10.1016/j.aquaculture.2022.738057.
  45. Hasan, K. N., and Banerjee, G. (2020), Recent studies on probiotics as beneficial mediator in aquaculture: A review, The Journal of Basic and Applied Zoology, 81, 1–16. Doi .org/10.1186/s41936-020-00190.
  46. El- Saadony, M. T., Alagawany, M., Patra, A. K., Kar, I., Tiwari, R., Dawood, M. A. O., Dhama, K., and Abdel- Latif, H. M. R. (2021), The functionality of probiotics in aquaculture: An overview, Fish and Shellfish Immunology, 117, 36–52. Doi://org/10.1016/j.fsi.2021.07.007.
  47. Assan, D., Kofi, F., Kuebutornye, A., Hlordzi, V., Chen, H., Mraz, J., Mustapha, U. F., and Abarike, E. D. (2022), Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: A mini review, Comparative Biochemistry and Physiology B, 257, 110653. Doi.org/10.1016/j.cbpb.2021.110653.
  48. Haroun, E., Goda, A., and Kabir, M. (2006), Effect of dietary probiotic Biogen supplementation as growth promoter on growth perfor-mance and feed untilization of Nile tilapia Oreochromis niloticus (L.), Aquaculture Reseach, 37(14), 1473–1480. Doi:10111/j.1365-2109.2006.01584.
  49. Ghanei- Motlagh, R., Mohammadian, T., Gharibi, D., Khosravi, M., Mahmoudi, E., Zarea, M., El- Matbouli, M., and Menanteau- Ledouble, S. (2021), Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato- biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer), Aquaculture, 531, 735874. Doi.org/10.1016/j.aquaculture.2020.735874.
  50. Suzer, C., Çoban, D., Kamaci, H. O., Saka, S., and Firat, K. (2008), Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata L.) larvae: Effects on growth performance and digestive enzyme activities, Aquaculture Research, 280, 140–145. Doi:10.1016/j.aquaculture.2008.04.020.
  51. Ringø, E., Van Doan, H., Lee, S.H., Soltani, M., Hoseinifar, S.H., Harikrishnan, R. and Song, S. K. (2020), Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture, Journal of Applied Microbiology, 129, 116–136. Doi.org/10.1111/jam.14628
  52. Amir, P. S., Seed, K., Omid, S. (2019), Dietary supplementation effects of Pediococus acidilactici as probiotic on growth performance, digestive enzyme activities and immunity response in zebrafish (Danio rerio), Aquaculture Nutrition, 25, 854–861. Doi.org/10.1111/anu.12904.
  53. Nahid, A., Amalia, S., Roshada, H., and Nor, S. A. (2021), Effect of Lactobacillus acidophilus supplementation on growth performances, digestive enzyme activities and gut histomorphology of striped catfish (Pangasianodon hypophthalmus Sauvage, 1878) juveniles, Aquaculture Research, 50, 786–797. Doi.org/10.1111/are.13938.