Investigation of Cyanobacterium Planktothrix spiroides (Wang & Li 2013) Biomass Recovery Method and Evaluation of IAA Biosynthesis Ability
PDF (Vietnamese)

Keywords

chitosan
Plantothrix spiroides
kết bông sinh khối
thu hồi sinh khối chitosan
Planktothrix spiroides
biomass flocculation
biomass recovery

Abstract

This study investigates methods for recovering the cyanobacterium Planktothrix spiroides (PHO) biomass, a potential source for biofertilizer production due to its ability to biosynthesize IAA. Various flocculation methods were tested, including pH adjustment and the use of FeCl₃ and chitosan. The results indicate that pH 8 is the optimal condition for flocculating PHO biomass, achieving an efficiency of 83% after 1 hour. Using FeCl₃ at a concentration of 200 mg/L resulted in a 95% biomass recovery within 15 minutes. The use of chitosan—a natural and environmentally friendly flocculant—also yielded high efficiency, with 93.33% of biomass recovered after 10 minutes at a stirring speed of 40 rpm and a chitosan concentration of 25 mg/L. The chitosan-based method not only ensures high flocculation efficiency but also minimizes the loss of IAA content in the culture medium as well as in the PHO biomass. The loss rate is estimated to be less than 1% in the culture medium and 6% in the biomass.

https://doi.org/10.26459/hueunijard.v134i3A.7621
PDF (Vietnamese)

References

  1. Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006), Commercial applications of microalgae J. Biosci. Bioeng, 101, 87–96.
  2. Christenson, L., Sims, R. (2011), Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol Adv., 686–702.
  3. Shankha, K., Satyapal, P., Sourav-Kumar, B. & Nirupama, M. (2017), Development of a harvesting technique for large scale microalgal harvesting for biodiesel production, R.S.C. Advances, 7, 7227–7237.
  4. Lee, C. S., Robinson, J. & Chong M. F. (2014), A review on application of flocculants in wastewater treatment, Process Saf. Environ. Prot., 92, 489–508.
  5. Yang, R., Li, H., Huang, M., Yang, H. & Li, A. (2016), A review on chitosan-based flocculants and their applications in water treatment, Water Res., 95, 59–89.
  6. Renault F., Sancey B., Badot P. M. & Crini G. (2009), Chitosan for coagulation/flocculation processes - an eco-friendly approach, Eur. Polym. J., 45, 1337–1348.
  7. Rinaudo, M. (2006), Chitin and chitosan: Properties and applications, Prog. Polym. Sci., 31 603–32.
  8. Singh H., Khattar J. S., Ahluwalia AS (2014), Cyanobacteria and agricultural crops, Int. J. Plant Res., 27(1), 37.
  9. Win, TT., Barone, GD., Secundo, F., Fu, P. (2018), Algal Biofertilizers and Plant Growth Stimulants for Sustainable Agriculture, Industrial Biotechnology, 14(4), 203–211.
  10. Kawalekar, J. S. (2013), Role of Biofertilizers and Biopesticides for Sustainable Agriculture, Journal of Bio Innovation, 2, 73–78.
  11. Romaneko, K. O., Kosakovskaya, I. V. & Romanenko, P. O. (2016), Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes, Pt II. Cytokinins and gibberellins, Inter. J. Algae, 18(2), 179–201.
  12. Varalakshmi, P., Malliga, P. (2012), Evidence of production of indole-3-acetic acid from a fresh water cyanobacteria (Oscillatoria annae) on the growth of H. annus., Inter. J. Sci. Res. Publ. 2(3), 1–15.
  13. Nguyễn Thị Thu Liên, Hoàng Dương Thu Hương, Ngô Thị Diễm My, Lê Mỹ Tiểu Ngọc, Phạm Thị Diễm Thi, Lê Thị Tuyết Nhân (2020), Sàng lọc khả năng sinh chất điều hoà sinh trưởng IAA ở một số chủng vi khuẩn lam dạng sợi phân lập ở Thừa Thiên Huế, Kỷ yếu Hội nghị Công Nghệ Sinh học Toàn quốc 2020, Thừa Thiên Huế 27-10-2020, Tạp chí Đại học Huế.
  14. Kotai, J. (1972), Instructions for preparation of modified nutrient solution Z8 for algae, Norwegian Institute for Water Research, Oslo B, 11(69), 1–5.
  15. Karlson, B., Cusack, C., Bresnan, E. (2010), Microscopic and molecular methods for quantitative phytoplankton analysis. Paris, France, UNESCO, 110 pp. (Intergovernmental Oceanographic Commission Manuals and Guides; 55). DOI: https://doi.org/10.25607/OBP-1371.
  16. Harith, T. Z., Yusoff, M. F., Mohamed, S. M., Din, M. S. M. & Ariff, B. A. (2009), Effect of different flocculants on the flocculantion performance of microalgae, Chaeroceros calcitrans, cells, Afr. J. Biotechnol, 8 (21), 5971–5978.
  17. Rahman, A., Sitepu, I. R., Tang, S. Y., Hashidoko, Y. (2010), Salkowski’s reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly axitic tropical peat soil., Bioscience, Biotechnology and Biochemistry, 74(11), 2202–2208.
  18. Tiêu chuẩn quốc gia TCVN 10784:2015 về Vi sinh vật - Xác định khả năng sinh tổng hợp axit 3-indol-axetic (IAA).
  19. Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T. (2012), Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium, Bioresourc. Technol., 110, 496–502.
  20. Horiuchi, J., Ohba, I., Tada, K., Kobayashi, M., Kanno, T. (2003), Effective cell harvesting of the halotolerant microalga Dunaliella tertiolecta with pH Control, J Biosci Bioengg, 95, 412–415.
  21. Molina, G. E., Belarbi, E. H., Acien-Fernandez, F. G., Robles-Medina, A., Yusuf, C. (2003), Recovery of microalgal biomass and metabolites: process options and economics, Biotechnol. Adv., 20, 491–515.
  22. Godos, I., Guzman, H. O., Soto, R., García-Encina, P. A., Becares, E., Muñoz, R., Vargas, V. A. (2011), Coagulation/flocculation-based removal of algal–bacterial biomass from piggery wastewater treatment, Bioresour. Technol., 102, 923–927.
  23. Koley, S., Prasad, S., Bagchi, S.K. & Mallick N. (2017), Development of a harvesting technique for large-scale microalgal harvesting for biodiesel production, R.S.C. Adv., 7, 7227–7237.
  24. Chatsungnoen, T., Chisti, Y. (2016), Harvesting microalgae by flocculation-sedimentation, Algal Res., 13, 271–283.
  25. Qasim, S. R. (2017), Wastewater treatment plants: planning, design, and operation (Boca Raton: CRC Press).
  26. Bina, B., Ebrahimi, A. & Hesami, F. (2014), The effectiveness of chitosan as coagulant aid in turbidity removal from water, Int. J. Environ. Health Eng., 3(8).
  27. Elcik, H., Karadag, D., Kara, A.I., Cakmakci, M. (2023), Microalgae Biomass Harvesting Using Chitosan Flocculant: Optimization of Operating parameters by Response Surface Methodology, Separations, 10, 507. https://doi.org/ 10.3390/separations10090507.
  28. Machado, A. C., Esteves, A. F., Pires, J. C. (2024), Chlorella vulgaris Harvesting: Chemical Flocculation with Chitosan, Aluminum Sulfate, and Ferric Sulfate, Appl. Sci., 14(2), 598.
  29. Zhu, L., Pan, G., Xu, H., Kong, L., Guo, W., Yu, J., Robert, J., Mortimer, G., Shi, W. (2021) Enhanced chitosan flocculation for microalgae harvesting using electrolysis, Algal Research, 55, 102268.
  30. Yang, R., Li, H., Huang, M., Yang, H., Li, A. (2016), A review on chitosan-based flocculants and their applications in water treatment, Water Res., 95, 59–89.
  31. Giannuzzi, L., Bacciadone, J., Salerno, G. L. (2022), A Promising Use of Trimethyl Chitosan for Removing Microcystis aeruginosa in Water Treatment Processes, Microorganisms, 10, 2052.
  32. Akis, S., Inan, B., Ozcimen, D.B. (2023), Effect of process parameters on chitosan-mediated microalgae flocculation, Chem. Biochem. Eng. Q., 37(2), 97–105.
  33. Duraisamy N., Muthu S., Thangavel K., Krishnan K., Sathasivam S. A bioflocculant made from chitosan and modified shrimp wastes might collect fresh and saltwater microalgae, Biotech. Res. Asia., 21(1), 99–107.
  34. Zhu, L., Li, Z., Hiltunen, E. (2018), Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction, Biotechnol Biofuels, 11,183.