Developing equation to estimate natural forest carbon based on using Sentinel-2 imagery: Case study in Da Nang city
PDF (Vietnamese)

Keywords

ảnh Sentinel-2
carbon rừng tự nhiên
Đà Nẵng
NDVI
phương trình hồi quy Da Nang
natural forest carbon
NDVI
regression equation
Sentinel-2 images

Abstract

Using remote sensing images and forest inventory data to estimate forest biomass basing on parameters and image indices that has been conducted for more than two decades on the World. In which, the Sentinel 2 image has quite high resolution and suitable for analyzing the relationship of forest vegetation reflectance indices with forest biomass, furthermore the Sentinel 2 images are free of charge so it contributes to reducing costs in estimating natural forest carbon stocks. This study was conducted to develop correlation equation between natural forest carbon stocks and normalized difference vegetation index (NDVI) of Sentinel 2 images in Danang city through linear and non-linear models. The study found out that the overall accuracy of the classification map is 96%, with a Kappa coefficient of 0.94. The regression equation                    TC = 5297,1  NDVI2 – 6127,9  NDVI + 1751,8 with          R2 = 0.8713 and an accuracy of 83.41% was selected for estimating natural forest carbon stocks in Danang city.      

https://doi.org/10.26459/hueunijard.v134i3A.7627
PDF (Vietnamese)

References

  1. Huete, A. R. (1988), A soil-adjusted vegetation index (SAVI), Remote Sensing of Environment, 25(3), 295–309. doi:10.1016/0034-4257(88)90106-X.
  2. Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002), Novel algorithms for remote estimation of vegetation fraction, Remote Sensing of Environment, 80(1), 76–87. doi:10.1016/S0034-4257(01)00289-9.
  3. Wu, C., Niu, Z., Tang, Q., & Huang, W. (2010), Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation, Agricultural and Forest Meteorology, 150(3), 464–472. doi:10.1016/j.agrformet.2010.01.003.
  4. Tucker, C. J. (1979), Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 8(2), 127–150.
  5. Baccini, A., Friedl, M. A., Woodcock, C. E., & Warbington, R. (2004), Forest biomass estimation over regional scales using multisource data, Geophysical Research Letters, 31(10).
  6. Pettorelli, Nathalie et al. (2005), Using the satellite-derived NDVI to assess ecological responses to environmental change, Trends in Ecology & Evolution, 20(9), 503–510. https://doi.org/10.1016/j.tree.2005.05.011.
  7. Askar, N., Nuthammachot, N., Phairuang, W., Wicaksono, P., & Sayektiningsih, T. (2018), Estimating Aboveground Biomass on Private Forest Using Sentinel-2 Imagery, Journal of Sensors, Article ID 6745629, 11 pages. https://doi.org/10.1155/2018/6745629.
  8. Jędrych, M., Zagajewski, B., & Marcinkowska-Ochtyra, A. (2017), Application of Sentinel-2 and EnMAP new satellite data to the mapping of environmental changes, Polish Cartographical Review, 49(3), 107–119. https://doi.org/10.1515/pcr-2017-0011.
  9. Poudel, A., Shrestha, M. L., Sharma, G., Aryal, S., Kalakheti, R., & Lamsal, D. (2023), Modelling and Mapping Above Ground Biomass Using Sentinel 2 and Planet Scope Remotely Sensed Data in West Usambara Tropical Rainforests, Tanzania, International Journal of Forestry Research, Article ID 5553957. https://doi.org/10.1155/2023/5553957.
  10. Dang, H. N., Ba, D. D., Trung, D.N., & Viet, H. N. H. (2022), A Novel Method for Estimating Biomass and Carbon Sequestration in Tropical Rainforest Areas Based on Remote Sensing Imagery: A Case Study in the Kon Ha Nung Plateau, Vietnam, Sustainability, 14, 16857. https://doi.org/10.3390/su142416857.
  11. Chính phủ Việt Nam (2023), Quyết định số 1287/QĐ-TTg ngày 02 tháng 11 năm 2023 của Thủ tướng Chính phủ Phê duyệt quy hoạch thành phố Đà Nẵng thời kỳ 2021 – 2030, tầm nhìn đến năm 2050.
  12. Huy, B., Poudel, K. P., & Temesgen, H. (2016), Aboveground biomass equations for evergreen broadleaf forests in South Central Coastal ecoregion of Viet Nam: Selection of eco-regional or pantropical models, Forest Ecology and Management, 376, 276–283.
  13. Congalton RG (1991), A review of assessing the accuracy of classifications of remotely sensed data, Remote Sensing of Environment, 37(1), 35–46.
  14. Cohen, J. (1960), A coefficient of agreement for nominal scales, Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104.
  15. Bảo Huy (2013), Mô hình sinh trắc và công nghệ viễn thám-GIS để xác định lượng CO2 hấp thụ của rừng lá rộng thường xanh vùng Tây Nguyên, Nxb. Khoa học và Kỹ thuật, Hà Nội.
  16. Mokany, K., Raison, R. J., & Prokushkin, A. S. (2006), Critical analysis of root: Shoot ratios in terrestrial biomes, Global Change Biology, 12(1), 84–96. https://doi.org/10.1111/j.1365-2486.2005.00143.x.
  17. IPCC (2006), Guidelines for National Greenhouse Gas Inventories. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Prepared by the National Greenhouse Gas Inventories Programme, IGES, Japan.
  18. Gitelson, A., & Merzlyak, M. N. (1997), Remote estimation of chlorophyll content in higher plant leaves, International Journal of Remote Sensing, 18(12), 2691–2697.
  19. Zhu, Z., & Liu, D. (2015), Improved forest biomass estimation by incorporating both optical and SAR data in a machine learning algorithm, Remote Sensing of Environment, 156, 490–499.
  20. Wang, Y., et al. (2011), Biomass and carbon estimation in a subtropical forest using lidar and optical remote sensing data, International Journal of Remote Sensing, 32(22), 6781–6800.
  21. Lu, D., & Batistella, M. (2005), Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon, Acta Amazonica, 35(2), 121–132.
  22. Zheng, D., et al. (2004), Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA, Remote Sensing of Environment, 93(3), 402–411.
  23. Parresol, B. R. (1999), Assessing tree and stand biomass: a review with examples and critical comparisons, Forest Science, 45(4), 573–593.
  24. Kvalseth, N. (1985), On the Use and Misuse of the Coefficient of Determination in Linear Regression, The American Statistician, 39(4), 279–285.
  25. Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, W. (1996), Applied Linear Statistical Models. 4th Edition, McGraw-Hill/Irwin.
  26. Draper, N. R., Smith, H. (1998), Applied Regression Analysis, 3rd Edition, Wiley-Interscience.
  27. Hyndman, R. J., Koehler, A. B. (2006), Another Look at Measures of Forecast Accuracy, International Journal of Forecasting, 22(4), 679–688.
  28. Willmott, C. J., Matsuura, K. (2005), Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance, Climate Research, 30(1), 79–82.