Abstract
Germination is an effective bioprocess for improving the nutritional value of seeds. This study evaluated the effects of soaking time and temperature on germination rate, and the effects of germination conditions on enzyme activities in adzuki beans (Vigna angularis). Amylase and cellulase activities were determined using the 3,5-dinitrosalicylic acid (DNS) assay at 540 nm, and protease activity by the Folin–Ciocalteu method at 750 nm. Free amino acids and sugars were analyzed by GC–MS following trimethylsilylation (TMS). Soaking at 35 °C for 6 h yielded the highest germination rate (97.13%). Germination at 25 °C for 36 h produced peak hydrolytic enzyme activities. Under these germination conditions, several amino acids increased markedly—L-glutamic acid (278.95%), L-alanine (242.71%), L-valine (504.88%), L-threonine (437.63%), and 4-aminobutanoic acid (75.58%)—whereas glycine decreased by 27.85% compared with raw seeds. After germination, new free amino acids appeared (L-leucine, L-isoleucine, L-proline, serine, L-aspartic acid, and phenylalanine). Total soluble sugars decreased in germinated seeds relative to raw seeds, while glucose, fructose, and D-psicose increased. These findings provide a basis for developing germinated adzuki bean products with enhanced nutritional value.
References
- Rizvi, Q. U. E. H., Guiné, R. P. F., Ahmed, N., Sheikh, M. A., Sharma, P., Sheikh, I., Yadav, A. N., & Kumar, K. (2024), Effects of soaking and germination treatments on the nutritional, anti-nutritional, and bioactive characteristics of Adzuki Beans (Vigna angularis L.) and Lima Beans (Phaseolus lunatus L.), Foods, 13(9), 1422. https://www.mdpi.com/2304-8158/13/9/1422.
- Shi, Z., Yao, Y., Zhu, Y., & Ren, G. (2016), Nutritional composition and biological activities of 17 Chinese adzuki bean (Vigna angularis) varieties, Food and Agricultural Immunology, 28(1):78–89.
- Khang, D. T., Dung, T. N., Elzaawely, A. A., & Xuan, T. D. (2016), Phenolic Profiles and Antioxidant Activity of Germinated Legumes, Foods, 5(2):27.
- Han, K.-H., Kitano-Okada, T., Seo, J.-M., Kim, S.-J., Sasaki, K., Shimada, K.-I., & Fukushima, M. (2015), Characterisation of anthocyanins and proanthocyanidins of adzuki bean extracts and their antioxidant activity, Journal of Functional Foods, 14, 692–701. https://doi.org/10.1016/j.jff.2015.02.018.
- Wang, L., Wang, J., & Cheng, X. (2019), Adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) breeding. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in plant breeding strategies: Legumes (Vol., 7, pp. 1–23). Springer International Publishing. https://doi.org/10.1007/978-3-030-23400-3_1.
- Chu, L., Zhao, P., Huang, X., Zhao, B., Li, Y., Yang, K., & Wan, P. (2021), Genetic analysis of seed coat colour in adzuki bean (Vigna angularis L.), Plant Genetic Resources: Characterization and Utilization, 19(1), 67–73. https://doi.org/10.1017/S1479262121000101.
- Song, H. Y., & Yu, R. C. (2018), Optimization of culture conditions for gamma-aminobutyric acid production in fermented adzuki bean milk, Journal of Food and Drug Analysis, 26(1), 74–81, https://doi.org/10.1016/j.jfda.2016.11.024.
- Takahama, U., Hirota, S., & Yanase, E. (2019), Slow starch digestion in the rice cooked with adzuki bean: Contribution of procyanidins and the oxidation products, Food Research International, 119, 187–195. https://doi.org/10.1016/j.foodres.2019.01.062.
- Chiu, K.-Y. (2021), Changes in microstructure, germination, sprout growth, phytochemical and microbial quality of ultrasonication treated adzuki bean seeds, Agronomy, 11(6), Article 1093, https://doi.org/10.3390/agronomy11061093.
- Świeca, M., Herok, A., Piwowarczyk, K., Sikora, M., Ostanek, P., Gawlik-Dziki, U., Kapusta, I., & Czyż, J. (2020), Potentially bioaccessible phenolics from mung bean and adzuki bean sprouts enriched with probiotic—Antioxidant properties and effect on the motility and survival of AGS human gastric carcinoma cells, Molecules, 25(13), Article 2963. https://doi.org/10.3390/molecules25132963.
- Luo, J., Cai, W., Wu, T., & Xu, B. (2016), Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities, Food Chemistry, 201, 350–360. https://doi.org/10.1016/j.foodchem.2016.01.101.
- Sreerama, Y. N., Takahashi, Y., & Yamaki, K. (2012), Phenolic antioxidants in some Vigna species of legumes and their distinct inhibitory effects on α-glucosidase and pancreatic lipase activities, Journal of Food Science, 77(9), 927–933, https://doi.org/10.1111/j.1750-3841.2012.02848.x.
- Li H, Zou L, Li XY, Wu DT, Liu HY, Li HB, Gan RY. (2022), Adzuki bean (Vigna angularis): Chemical compositions, physicochemical properties, health benefits, and food applications. Compr Rev Food Sci Food Saf., 21(3):2335–62, doi:10.1111/1541-4337.12945.
- Xu, L., Chen, L., Yang, N., Chen, Y., Wu, F., Jin, Z., Xu, X. (2017), Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.), Food Chem, 229:312–318.
- Ma, M., Zhang, H., Xie, Y., Yang, M., Tang, J., Wang, P., Yang, R., Zhenxin, G. (2020), Response of nutritional and functional composition, anti-nutritional factors and antioxidant activity in germinated soybean under UV-B radiation, LWT Food Sci. Technol., 118:108709.
- Han, A., Arijaje, E.O., Jinn, J.R., Mauromoustakos, A., Wang, Y.J. (2016), Effects of germination duration on milling, physicochemical, and textural properties of medium- and long-grain rice, Cereal Chem, 93:39–46.
- Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J.-B. (2018), Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes, Food Science & Nutrition, 6(8), 2446–2458. https://doi.org/https://doi.org/10.1002/fsn3.846
- Guzmán-Ortiz FA, Castro-Rosas J, Gómez-Aldapa CA, Mora-Escobedo R, Rojas-León A, Rodríguez-Marín ML, Falfán-Cortés RN, Román-Gutiérrez AD. (2018), Enzyme activity during germination of different cereals: A review. Food Rev Int., 35(5):1–24. DOI:10.1080/87559129.2018.1514623.
- Dong L, Yang Y, Zhao Y, Liu Z, Li C, He L, Liu L. (2024), Effect of different conditions on the germination of coix seed and its characteristics analysis, Food Chemistry X., 22:101332. http://doi.org/10.1016/j.fochx.2024.101332.
- Bagarinao NC., King J., Leong SY., Agyei D., Sutton K., Oey I. (2024), Effect of germination on seed protein quality and secondary metabolites and potential modulation by pulsed electric field treatment, Foods, 13(11):1598, https://doi.org/10.3390/foods13111598.
- Trần Thị Ngọc Mai (2018), Ảnh hưởng của quá trình ngâm đến tỷ lệ nảy mầm của một số hạt họ đậu, Hội nghị Khoa học an toàn dinh dưỡng và an ninh lương thực lần 2 năm 2018, 52–58.
- Huang X, Cai W, Xu B. (2024), Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time, Food Chem., 143:268–76, doi:10.1016/j.foodchem.2013.07.080.
- Chen, Z., Yu, L., Wang, X., Gu, Z., & Beta, T. (2016), Changes of phenolic profiles and antioxidant activity in canaryseed (Phalaris canariensis L.) during germination, Food Chemistry, 194, 608–618, https://doi.org/10.1016/j.foodchem.2015.08.060.
- Wen-Chien Lu, Yu-Tsung Cheng, Yung-Jia Chan, Jin Yan, Po-Hsien Li (2024), Effects of different soaking and germinating conditions on γ-aminobutyric acid, antioxidant activity, and chemical composition of djulis (Chenopodium formosanum), Journal of Agriculture and Food Research, 17 (5):101162.
- Złotek, U., Szymanowska, U., Baraniak, B., & Karaś, M. (2015), Antioxidant activity of polyphenols of adzuki bean (Vigna angularis) germinated in abiotic stress conditions, Acta Scientiarum Polonorum Technologia Alimentaria, 14(1):55–63. http://doi.org/10.17306/j.afs.2015.1.6
- Vu LTK., Nguyen NTM., Tran NTH., Vo HNA. (2023), Effects of roasting temperature on anti-nutritional factors and antioxidant property of adzuki bean (Vigna angularis) flour, Journal of Technical Education Science, 80:70–76, doi:10.54644/jte.80.2023.1494.
- Nguyễn, T. T. T., & Đào, N. M. (2025), Khảo sát hàm lượng flavonoid tổng số và hoạt tính chống gốc tự do của cao chiết từ một số loại đậu trên thị trường Việt Nam, Tạp chí Khoa học và Công nghệ nhiệt đới, 31, 101–108, https://doi.org/10.58334/vrtc.jtst.n31.10.
- Nguyễn TL, Lâm HH. (2025), Khảo sát sự biến đổi thành phần dinh dưỡng của hạt đậu đỏ sau khi nảy mầm, Tạp chí Công Thương – Các kết quả nghiên cứu khoa học và ứng dụng công nghệ, 23(7), https://tapchicongthuong.vn/khao-sat-su-bien-doi-thanh-phan-dinh-duong-cua-hat-dau-do-sau-khi-nay-mam-173210.htm
- ISTA (2023), International Rules for Seed Testing, Bassersdorf, Switzerland: International Seed Testing Association.
- Tiêu chuẩn quốc gia TCVN - 8548:2011 - Hạt giống cây trồng – Phương pháp kiểm nghiệm (2011), Hà Nội: Bộ Khoa học và Công nghệ.
- Augustini, R., Herdiastuti, N. (2020), The Study of Amylase’s Reaction Kinetics from Soybean Sprouts (Glycine max L.) in Hydrolyzing Starch, International Joint Conference on Science and Engineering (IJCSE 2020, Advances in Engineering Research, 96:331–336, doi.org/10.2991/aer.k.201124.060.
- X. Dong, J. Ji, S. Zhang, D. Peng, Y. Wang, L. Zhang, J. Li, G. Wang (2022), Study on a lowtemperature cellulose-degrading strain: fermentation optimization, straw degradation, and the effect of fermentation broth on seed growth, Biotechnology and Bioprocess Engineering, 27(4):652–667.
- Mustafa, A., Åman, P., Andersson, R., & Kamal‐Eldin, A. (2007), Analysis of free amino acids in cereal products, Food Chemistry, 105(1):317–324. http://doi.org/10.1016/j.foodchem.2006.11.04420
- Osial M, Wilczewski S, Szulc J, Nguyen HD, Nguyen TKO, Skórczewska K, Majkowska-Pilip A, Żelechowska-Matysiak K, Nieciecka D, Pregowska A, et al (2023), Nanohydroxyapatite Loaded with 5-Fluorouracil and Calendula officinalis L. Plant Extract Rich in Myo-Inositols for Treatment of Ovarian Cancer Cells. Coatings, 13(11):1944. https://doi.org/10.3390/coatings13111944.
- X. Li, X. Liu, Y. Hua, Y. Chen, X. Kong, C. Zhang (2019), Effects of water absorption of soybean seed on the quality of soymilk and the release of flavor compounds, RSC Advances, 9:2906–2918, DOI:10.1039/C8RA08029A.
- Đỗ Thị Bích Thuỷ, Huỳnh Thị Diễm Uyên, Nguyễn Thị Vân Anh, Nguyễn Thị Thuỷ Tiên, Trần Thanh Quỳnh Anh, Nguyễn Thỵ Đan Huyền (2020), Công nghệ sản xuất và kiểm soát chất lượng đồ uống, Nhà xuất bản Đại Học Huế, 17.
- Trần Thị Thúy, Nguyễn Thị Thu Hoài, Tống Thị Mơ (2018), Đánh giá hàm lượng một số yếu tố dinh dưỡng và enzyme trong giai đoạn nảy mầm sớm của hai giống đậu tương (Glycine max) DT84 và DT2008, Tạp chí sinh học, 40(1):76–83, DOI:10.15625/0866-7160/v40n1.10865.
- Uriyo, Maria (2001), Changes in enzyme activities during germination of cowpeas (Vigna unguiculata), cv. California blackeye), Food Chemistry, 73:7–10, DOI:10.1016/S0308-8146(00)00269-7.
- Rahman, M. & Banu, L. & Rahman, Md. Mashiar & Shahjadee, U. (2007), Changes of the enzymes activity during germination of different mungbean varieties, Bangladesh Journal of Scientific and Industrial Research, 42(2):213–216, DOI:10.3329/bjsir.v42i2.474.
- Yongqi Yin, Chao Cheng and Weiming Fang (2018), Effects of the inhibitor of glutamate decarboxylase on the development and GABA accumulation in germinating fava beans under hypoxia-NaCl stress, RSC Advances, 8:20456–20461, DOI:10.1039/c8ra03940b.
- Nguyễn Thị Thơm, Nguyễn Thị Định, Dương Thị Doanh, Cao Thị Thảo, Nguyễn Đức Doan (2021), Ảnh hưởng của nẩy mầm đến hàm lượng axit gamma-aminobutyric, axit phytic và thành phần hóa học của đậu ván trắng (lablab purpureus (l.) sweet), Tạp chí Khoa học Nông nghiệp Việt Nam, 19(6):737–744.
- Sabetta W, Paradiso A, Paciolla C, de Pinto MC. (2017), Chemistry, biosynthesis and antioxidative function of glutathione in plants. In: Hossain M, Mostofa M, Diaz Vivancos P, Burritt DJ, Fujita M, Tran LS, editors. Glutathione in Plant Growth, Development, and Stress Tolerance, Cham (Switzerland): Springer; 2017. p. 1–27, doi:10.1007/978-3-319-66682-2_1.
- Vidal-Valverde, C., & Frias, J. (1992), Changes in carbohydrates during germination of lentils, Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 194(6):461–464. http://doi.org/10.1007/BF01197729.
- El-Adawy, T., Rahma, E., El-Bedawey, A. El-Beltagy (2003), Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds, Plant Foods Hum Nutr, 58: 1–13. http://doi.org/10.1023/B:QUAL.0000040339.48521.75.