CÁC YẾU TỐ ẢNH HƯỞNG ĐẾN PHẢN ỨNG PHÂN HỦY QUANG HÓA XANH METHYLENE BẰNG HỆ XÚC TÁC CeO2-TiO2 NANOTUBES

Le Thi Thanh Tuyen, Đào Anh Quang, Trần Thanh Tâm Toàn, Trương Quý Tùng, Trần Thái Hòa

DOI: http://dx.doi.org/10.26459/hueuni-jns.v127i1B.4786

Abstract


Trong nghiên cứu này, sự phân hủy quang hóa xanh methylene (MB) dưới bức xạ khả kiến được tiến hành với sự có mặt của vật liệu xúc tác ống nano TiO2 pha tạp CeO2 (CeO2-TiO2-NTs). Ảnh hưởng của các yếu tố khác nhau như pH của dung dịch, nồng độ đầu của dung dịch MB, nhiệt độ nung và tỉ lệ pha tạp Ce:Ti đến khả năng xúc tác quang hóa phân hủy MB của vật liệu CeO2-TiO2-NTs cũng được khảo sát chi tiết. Kết quả cho thấy CeO2-TiO2-NTs@0,1 (tỉ lệ mol Ce:Ti là 0,1) nung ở 550 °C có hoạt tính xúc tác quang tốt nhất, phân hủy gần 97% MB (C0 = 15 ppm, pH = 6,5) sau hơn 2h chiếu xạ.

References


. Abdullah H., Khan M.R., Pudukudy M., et al. (2015). CeO2-TiO2 as a visible light active catalyst for the photoreduction of CO2 to methanol. Journal of Rare Earths, Vol.33, Iss.11, pp.1155–1161.

. Amalraj A., Pius A. (2014). Photocatalytic Degradation of Alizarin Red S and Bismarck Brown R Using TiO. Journal of Chemistry & Applied Biochemistry, Vol.1, Iss.1, pp.1–7.

. Ampelli C., Passalacqua R., Genovese C., et al. (2013). Solar energy and biowaste conversion into H2 on CuOx/TiO2 nanocomposites. Chemical Engineering Transactions, Vol.35, pp.583–588.

. Contreras-Garca M.E., Garca-Benjume M.L., Macas-Andrs V.I., et al. (2014). Synergic effect of the TiO2-CeO2 nanoconjugate system on the band-gap for visible light photocatalysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, Vol.183, Iss.1, pp.78–85.

. Eskandarloo H., Badiei A., Behnajady M.A. (2014). TiO2/CeO2 Hybrid photocatalyst with enhanced photocatalytic activity: Optimization of synthesis variables. Industrial and Engineering Chemistry Research, Vol.53, Iss.19, pp.7847–7855.

. Galindo F., Gómez R., Aguilar M. (2008). Photodegradation of the herbicide 2,4-dichlorophenoxyacetic acid on nanocrystalline TiO2-CeO2 sol-gel catalysts. Journal of Molecular Catalysis A: Chemical, Vol.281, Iss.1–2, pp.119–125.

. Hanafi S.A., El-Syed H.A., Soltan E.-S.A. (2008). High Quality Diesel by Hydrotreating Gas Oil over Modified Titania-supported NiMo Catalysts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol.30, Iss.8, pp.698–722.

. Hao C., Li J., Zhang Z., et al. (2015). Enhancement of photocatalytic properties of TiO2 nanoparticles doped with CeO2 and supported on SiO2 for phenol degradation. Applied Surface Science, Vol.331, pp.17–26.

. Johnston-Peck A.C., Senanayake S.D., Plata J.J., et al. (2013). Nature of the mixed-oxide interface in ceria-titania catalysts: Clusters, chains, and nanoparticles. Journal of Physical Chemistry C, Vol.117, Iss.28, pp.14463–14471.

. Karunakaran C., Gomathisankar P. (2013). Solvothermal Synthesis of CeO2 –TiO2 Nanocomposite for Visible Light Photocatalytic Detoxification of Cyanide. ACS Sustainable Chemistry & Engineering, Vol.1, Iss.12, pp.1555–1563.

. Kim J.R., Santiano B., Kim H., et al. (2013). Heterogeneous Oxidation of Methylene Blue with Surface-Modified Iron-Amended Activated Carbon. American Journal of Analytical Chemistry, Vol.2013, Iss.July, pp.115–122.

. Krishnakumar B., Swaminathan M. (2011). Influence of operational parameters on photocatalytic degradation of a genotoxic azo dye Acid Violet 7 in aqueous ZnO suspensions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, Vol.81, Iss.1, pp.739–744.

. Laoufi N. a, Tassalit D., Bentahar F. (2008). The degradation of phenol in water solution by tio2 photocatalysis in a helical reactor. Global NEST Journal, Vol.10, Iss.3, pp.404–418.

. Lu X., Li X., Qian J., et al. (2016). Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. Journal of Alloys and Compounds, Vol.661, pp.363–371.

. Matějová L., Kočí K., Reli M., et al. (2014). Preparation, characterization and photocatalytic properties of cerium doped TiO2: On the effect of Ce loading on the photocatalytic reduction of carbon dioxide. Applied Catalysis B: Environmental, Vol.152–153, pp.172–183.

. Panizza M., Oturan M.A. (2011). Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode. Electrochimica Acta, Vol.56, Iss.20, pp.7084–7087.

. Periyat P., Baiju K. V., Mukundan P., et al. (2007). Aqueous colloidal sol-gel route to synthesize nanosized ceria-doped titania having high surface area and increased anatase phase stability. Journal of Sol-Gel Science and Technology, Vol.43, Iss.3, pp.299–304.

. Saien J., Khezrianjoo S. (2008). Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: Optimization, kinetics and toxicity studies. Journal of Hazardous Materials, Vol.157, Iss.2–3, pp.269–276.

. Sun J., Wang Y., Sun R., et al. (2009). Photodegradation of azo dye Congo Red from aqueous solution by the WO3–TiO2/activated carbon (AC) photocatalyst under the UV irradiation. Materials Chemistry and Physics, Vol.115, Iss.1, pp.303–308.

. Tomova D., Iliev V., Eliyas A., et al. (2015). Promoting the oxidative removal rate of oxalic acid on gold-doped CeO2/TiO2 photocatalysts under UV and visible light irradiation. Separation and Purification Technology, Vol.156, pp.715–723.

. Wang Y., Zhao J., Wang T., et al. (2016). CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity. Journal of Catalysis, Vol.337, pp.293–302.

. Xiang Li, Xiansheng Li, Junhua Li J.H. (2016). Identification of the arsenic resistance on MoO3doped CeO2/TiO2 catalyst for selective catalytic reduction of NOx with ammonia. Journal of Hazardous Materials, Vol.318, pp.615–622.

. Xiong L., Yang F., Yan L., et al. (2011). Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3+ in organic pollutant degradation and water splitting. Journal of Physics and Chemistry of Solids, Vol.72, Iss.9, pp.1104–1109.

. Xue W., Zhang G., Xu X., et al. (2011). Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate. Chemical Engineering Journal, Vol.167, Iss.1, pp.397–402.

. Yetim T., Tekin T. (2017). A kinetic study on photocatalytic and sonophotocatalytic degradation of textile dyes. Periodica Polytechnica Chemical Engineering, Vol.61, Iss.2, pp.102–108.

. Yuan, B., Long, Y., Wu, L., Liang, K., Wen, H., Luo, S., Huo, H., Yang, H. and Ma J. (2016). TiO2@ h-CeO2: a composite yolk-shell microsphere with enhanced photodegradation activity. Catalysis Science & Technology, Vol.6, pp.6396–6405.

. Zhou Q., Xing A., Li J., et al. (2016). Synergistic enhancement in photoelectrocatalytic degradation of bisphenol A by CeO2 and reduced graphene oxide co-modified TiO2 nanotube arrays in combination with Fenton oxidation. Electrochimica Acta, Vol.209, pp.379–388.

. Zuo R., Du G., Zhang W., et al. (2014). Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite. Advances in Materials Science and Engineering, Vol.2014, pp.1–7.