Nguyễn ĐỨC Vũ Quyên, Trần Ngọc Tuyền, Đinh Quang Khiếu, Đặng Xuân Tín, Bùi Thị Hoàng Diễm, Nguyễn Thị Mỹ Tính, Phạm Thị Ngọc Lan

DOI: http://dx.doi.org/10.26459/hueuni-jns.v128i1B.5216


Carbon nanotubes (CNTs) synthesized by chemical vapour deposition without using hydrogen were oxidized with 0.1 M potassium permanganate at 40oC for 2 hours and exhibited high CuII adsorption capacity from aqueous solution. X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM), transmission electron microscope (TEM) and nitrogen adsorption/desorption isotherms were used to characterize the oxidized CNTs. After oxidizing, the obtained CNTs were used to remove CuII from aqueous solution. With CuII initial concentration of 20 mg.L-1, at pH of 4 and adsorbent dosage of 0.2 g.L-1, the oxidized CNTs exhibited high CuII adsorption ability with maximum adsorption capacity of 174.4 mg.g-1.


Oxidized carbon nanotubes; CuII adsorption capacity; CuII adsorption; potassium permanganate; oxidized CNTs.


Alinnor I. J. (2007), Adsorption of heavy metal ions from aqueous solution by fly ash, Fuel 86(5-6), 853-857.

Atieh M. A., Bakather O. Y., Al-Tawbini B., Bukhari A. A., Abuilaiwi F. A. and Fettouhi M. B. (2010), Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead fromWater, Bioinorganic Chemistry and Applications 2010, 9 pages.

Datsyuka V., Kalyvaa M., Papagelisb K., Partheniosa J., Tasisb D., Siokoua A., Kallitsisa I., Galiotisa C. (2000), Chemical oxidation of multiwalled carbon nanotubes, Carbon 46, 833-840.

Islam M. S., Ahmed M. K., Raknuzzaman M., Habibullah-Al-Mamun M., Islam M. K. (2015), Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country, Ecological Indicators 48, 282-291.

Li Y. H., Di Z. C., Luan Z. K., Dinh J., Zuo H., Wu X. Q., Xu C. L., Wu D. H. (2004), Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics, Journal of Environmental Sciences 16(2), 208-211.

Li Y. H., Luan Z., Xiao X., Zhou X., Xu C., Wu D. and Wei B. (2003), Removal of Cu2+ Ions from Aqueous Solutions by Carbon Nanotubes, Adsorption Science & Technology 21(5), 475-485.

Li Y. H., Wang S., Luan Z., Ding J., Xu C., Wu D. (2003) A dsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon 41, 1057-1062.

Lu C. and Liu C. (2006), Removal of nickel(II) from aqueous solution by carbon nanotubes, Journal of Chemical Technology and Biotechnology 81, 1932-1940.

Kılıç M., Kırbıyık Ç., Çepelioğullar Ö., Pütün A. E. (2013), Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis, Applied Surface Science 283, 856-862.

Kobya M., Demirbas E., Senturk E. , Ince M. (2005), Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresource Technology, 96(13) 1518-1521.

Moosa A. A., Ridha A. M., Abdullha I. N. (2015), Chromium ions removal from wastewater using carbon nanotubes, International Journal for Innovative Research in Science & Technology 4(2), 275-282.

Scheibe B., Palen E. B., Kalenczuk R. J. (2010), Oxidation and reduction of multiwalled carbon nanotubes - preparation and characterization, Materials Characterization 61, 185 - 191.

Sheng G., Li J., Shao D., Hu J., Chen C., Chen Y., Wang X. (2010), Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids, Journal of Hazardous Materials 178, 333-340.

Slobodian P., Riha P., Olejnik R., Cvelbar U., Saha P. (2013), Enhancing effect of KMnO4 oxidation of carbon nanotubes network embedded in elastic polyurethane on overall electro-mechanical properties of composite, Composites Science and Technology 81, 54-60.

Srivastava S. (2013), Sorption of divalent metal ions from aqueous solution by oxidized carbon nanotubes and nanocages: a review,” Advanced Materials Letters 4(1), 2-8.

Stafiej A., Pyrzynska K. (2007), Adsorption of heavy metal ions with carbon nanotubes, Separation and Purification Technology 58, 49-52.

Sui X. M., Giordani S., Prato M., and Wagner H. (2009), Effect of carbon nanotube surface modification on dispersion and structural properties of electrospun fibers, Applied Physics Letters 95, 233113(1-3).

Wang J., Li Z., Li S., Qi W., Liu P., Liu F., Ye Y., Wu L., Wang L., Wu W. (2013) Adsorption of Cu(II) on oxidized multi-walled carbon nanotubes in the presence of hidroxylated and carboxylated fullerenes, Plos one 8(8), 1-11.

Zehua Q. and Guojian W. (2012), Effective Chemical Oxidation on the Structure of Multiwalled Carbon Nanotubes, Journal of Nanoscience and Nanotechnology 12, 105-111.

Zhang N., Xie J. and VaradanV. K. (2014), Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst, Smart Materials and Structures 11, 962 - 965.