Structure, stability, and electronic properties of singly and doubly transition-metal-doped boron clusters B14M
PDF

Keywords

DFT
boron cluster
density of state

How to Cite

1.
Tam NM, Pham-Ho M-P. Structure, stability, and electronic properties of singly and doubly transition-metal-doped boron clusters B14M. hueuni-jns [Internet]. 2019Oct.1 [cited 2025Jan.7];128(1B):49-55. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/5356

Abstract

An examination of the first-row-transition-metal-doped boron clusters, B14M (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) in the neutral state, is carried out using DFT quantum chemical calculations. The lowest-energy equilibrium structures of the clusters considered are identified at the TPSSh/ 6-311+G(d) level. The structural patterns of doped species evolve from exohedrally capped quasi-planar structure B14 to endohedrally doped double-ring tubular when M is from Sc to Cu. The B14Ti and B14Fe appear as outstanding species due to their enhanced thermodynamic stabilities with larger average binding energies. Their electronic properties can be understood in terms of the density of state.

https://doi.org/10.26459/hueuni-jns.v128i1B.5356
PDF

References

  1. Tai TB, Tam NM, Nguyen MT. The Boron conundrum: the case of cationic clusters Bn+with n = 2–20. Theoretical Chemistry Accounts. 2012;131(6):1241.
  2. Tai TB, Tam NM, Nguyen MT. The Boron conundrum: the case of cationic clusters Bn+with n = 2–20. Theoretical Chemistry Accounts. 2012;131(6):1241.
  3. Sergeeva AP, Popov IA, Piazza ZA, Li W-L, Romanescu C, Wang L-S, et al. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality. Accounts of Chemical Research. 2014;47(4):1349-58.
  4. Tai TB, Tam NM, Nguyen MT. Structure of boron clusters revisited, Bn with n = 14–20. Chemical Physics Letters. 2012;530:71-6.
  5. Cheng L. B14: An all-boron fullerene. The Journal of Chemical Physics. 2012;136(10):104301.
  6. Yuan Y, Cheng L. B142+: A magic number double-ring cluster. The Journal of Chemical Physics. 2012;137(4):044308.
  7. Kiran B, Bulusu S, Zhai H-J, Yoo S, Zeng XC, Wang L-S. Planar-to-tubular structural transition in boron clusters: B<sub>20</sub> as the embryo of single-walled boron nanotubes. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(4):961.
  8. Pham HT, Duong LV, Pham BQ, Nguyen MT. The 2D-to-3D geometry hopping in small boron clusters: The charge effect. Chemical Physics Letters. 2013;577:32-7.
  9. Chacko S, Kanhere DG, Boustani I. Ab initio density functional investigation of ${mathrm{B}}_{24}$ clusters: Rings, tubes, planes, and cages. Physical Review B. 2003;68(3):035414.
  10. Pham HT, Duong LV, Nguyen MT. Electronic Structure and Chemical Bonding in the Double Ring Tubular Boron Clusters. The Journal of Physical Chemistry C. 2014;118(41):24181-7.
  11. Johansson MP. On the Strong Ring Currents in B20 and Neighboring Boron Toroids. The Journal of Physical Chemistry C. 2009;113(2):524-30.
  12. Bean DE, Fowler PW. Double Aromaticity in “Boron Toroids”. The Journal of Physical Chemistry C. 2009;113(35):15569-75.
  13. Janssens E, Neukermans S, Nguyen HMT, Nguyen MT, Lievens P. Quenching of the Magnetic Moment of a Transition Metal Dopant in Silver Clusters. Physical Review Letters. 2005;94(11):113401.
  14. Ngan VT, Janssens E, Claes P, Fielicke A, Nguyen MT, Lievens P. Nature of the interaction between rare gas atoms and transition metal doped silicon clusters: the role of shielding effects. Physical Chemistry Chemical Physics. 2015;17(27):17584-91.
  15. Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S. Transition-Metal-Centered Monocyclic Boron Wheel Clusters (M©Bn): A New Class of Aromatic Borometallic Compounds. Accounts of Chemical Research. 2013;46(2):350-8.
  16. Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S. Geometric and electronic factors in the rational design of transition-metal-centered boron molecular wheels. The Journal of Chemical Physics. 2013;138(13):134315.
  17. Galeev TR, Romanescu C, Li W-L, Wang L-S, Boldyrev AI. Observation of the Highest Coordination Number in Planar Species: Decacoordinated Ta©B10− and Nb©B10− Anions. Angewandte Chemie International Edition. 2012;51(9):2101-5.
  18. Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S. Aromatic Metal-Centered Monocyclic Boron Rings: Co©B8− and Ru©B9−. Angewandte Chemie International Edition. 2011;50(40):9334-7.
  19. Li W-L, Romanescu C, Galeev TR, Piazza ZA, Boldyrev AI, Wang L-S. Transition-Metal-Centered Nine-Membered Boron Rings: MⓒB9 and MⓒB9– (M = Rh, Ir). Journal of the American Chemical Society. 2012;134(1):165-8.
  20. Li W-L, Ivanov AS, Federič J, Romanescu C, Černušák I, Boldyrev AI, et al. On the way to the highest coordination number in the planar metal-centred aromatic Ta©B10− cluster: Evolution of the structures of TaBn− (n = 3–8). The Journal of Chemical Physics. 2013;139(10):104312.
  21. Liao Y, Cruz CL, von Ragué Schleyer P, Chen Z. Many M©Bn boron wheels are local, but not global minima. Physical Chemistry Chemical Physics. 2012;14(43):14898-904.
  22. Li W-L, Romanescu C, Piazza ZA, Wang L-S. Geometrical requirements for transition-metal-centered aromatic boron wheels: the case of VB10−. Physical Chemistry Chemical Physics. 2012;14(39):13663-9.
  23. Li W-L, Jian T, Chen X, Chen T-T, Lopez GV, Li J, et al. The Planar CoB18− Cluster as a Motif for Metallo-Borophenes. Angewandte Chemie International Edition. 2016;55(26):7358-63.
  24. Tam NM, Pham HT, Duong LV, Pham-Ho MP, Nguyen MT. Fullerene-like boron clusters stabilized by an endohedrally doped iron atom: BnFe with n = 14, 16, 18 and 20. Physical Chemistry Chemical Physics. 2015;17(5):3000-3.
  25. Tam NM, Duong LV, Pham HT, Nguyen MT, Pham-Ho MP. Effects of single and double nickel doping on boron clusters: stabilization of tubular structures in BnNim, n = 2–22, m = 1, 2. Physical Chemistry Chemical Physics. 2019;21(16):8365-75.
  26. Shakerzadeh E, Van Duong L, Tahmasebi E, Nguyen MT. The scandium doped boron cluster B27Sc2+: a fruit can-like structure. Physical Chemistry Chemical Physics. 2019;21(17):8933-9.
  27. Pham HT, Nguyen MT. Effects of bimetallic doping on small cyclic and tubular boron clusters: B7M2 and B14M2 structures with M = Fe, Co. Physical Chemistry Chemical Physics. 2015;17(26):17335-45.
  28. Pham HT, Tam NM, Pham-Ho MP, Nguyen MT. Stability and bonding of the multiply coordinated bimetallic boron cycles: B8M22−, B7NM2 and B6C2M2 with M = Sc and Ti. RSC Advances. 2016;6(57):51503-12.
  29. Duong LV, Pham HT, Tam NM, Nguyen MT. A particle on a hollow cylinder: the triple ring tubular cluster B27+. Physical Chemistry Chemical Physics. 2014;16(36):19470-8.
  30. Frisch MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, et al. Gaussian 09 Revision: D.01, Gaussian Inc., Wallingford, CT, USA. Gaussian 09 Revision: D01. 2009.
  31. Tai TB, Nguyen MT. A Stochastic Search for the Structures of Small Germanium Clusters and Their Anions: Enhanced Stability by Spherical Aromaticity of the Ge10 and Ge122− Systems. Journal of Chemical Theory and Computation. 2011;7(4):1119-30.
  32. Pham HT, Cuong NT, Tam NM, Tung NT. A Systematic Investigation on CrCun Clusters with n = 9–16: Noble Gas and Tunable Magnetic Property. The Journal of Physical Chemistry A. 2016;120(37):7335-43.
  33. Tam NM, Tai TB, Ngan VT, Nguyen MT. Structure, Thermochemical Properties, and Growth Sequence of Aluminum-Doped Silicon Clusters SinAlm (n = 1–11, m = 1–2) and Their Anions. The Journal of Physical Chemistry A. 2013;117(31):6867-82.
  34. Brack M. The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Reviews of Modern Physics. 1993;65(3):677-732.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2019 Array