Electrochemical behaviors of uric acid, xanthine, and hypoxanthine at polythiophene-chitosan-modified glassy-carbon electrode
PDF (Vietnamese)

How to Cite

1.
Nhàn Đặng TT, Phong NH, Phương HTL, Thắng LQ. Electrochemical behaviors of uric acid, xanthine, and hypoxanthine at polythiophene-chitosan-modified glassy-carbon electrode. hueuni-jns [Internet]. 2019Nov.12 [cited 2024Mar.28];128(1C):95-101. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/5403

Abstract

In this study, polythiophene-chitosan-modified glassy-carbon electrodes were used for the simultaneous determination of xanthine, hypoxanthine, and uric acid by the differential pulse anodic stripping voltammetry method. The electrochemical behaviors of the three analytes on the electrode surfaces were studied through the investigation of the influence of pH and the scanning rate. The results show that the number of electrons and protons involved in the electrode process is equal. An irreversible process takes place on the electrode. The electrochemical processes are adsorption-controlled for hypoxanthine and mixed diffusion/adsorption-controlled for xanthine and uric acid.

https://doi.org/10.26459/hueuni-jns.v128i1C.5403
PDF (Vietnamese)

References

  1. Yamamoto T, Moriwaki Y, Takahashi S. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid). Clinica Chimica Acta. 2005;356(1-2):35-57.
  2. Heinig M, Johnson RJ. Role of uric acid in hypertension, renal disease, and metabolic syndrome. Cleveland Clinic Journal of Medicine. 2006;73(12):1059-1064.
  3. Cooper N, Khosravan R, Erdmann C, Fiene J, Lee J W. Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies. Journal of Chromatography B. 2006;837(1-2):1-10.
  4. Zhao S, Wang J, Ye F, Liu YM. Determination of uric acid in human urine and serum by capillary electrophoresis with chemiluminescence detection. Analytical Biochemistry. 2008;378(2):127-131.
  5. Felix FS, Ferreira LMC, Vieira F, Trindade G M, Ferreira VSSA, Angnes L. Amperometric determination of promethazine in tablets using an electrochemically reduced graphene oxide modified electrode. New Journal of Chemistry. 2015;39:696-702.
  6. Lan D, Zhang L. Electrochemical synthesis of a novel purine-based polymer and its use for the simultaneous determination of dopamine, uric acid, xanthine and hypoxanthine. Journal of Electroanalytical Chemistry. 2015;757:107-115.
  7. Zhang F, Wang Z, Zhang Y, Zheng Z, Wang C, Du Y, Ye W. Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode. Talanta. 2012;93:320-325.
  8. Soleymani J, Hasanzadeh M, Shadjou N, Khoubnasab JM, Gharamaleki JV, Yadollahi M, Jouyban A. A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Materials Science and Engineering: C. 2016;61:638-650.
  9. Yin H, Zhang Q, Zhou Y, Ma Q, Liu T, Zhu L, Ai S. Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene–chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples, Electrochimica Acta. 2011;56(6):2748-2753.
  10. Ojani R, Alinezhad A, Abedi Z. A highly sensitive electrochemical sensor for simultaneous detection of uric acid, xanthine and hypoxanthine based on poly(l-methionine) modified glassy carbon electrode, Sensors and Actuators B: Chemical. 2013;188:621-630.
  11. MansouriMajd S, Teymourian H, Salimi A, Hallaj R. Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/ chitosan nanocomposite modified glassy carbon electrode. Electrochimica Acta. 2013;108:707-716.
  12. Niu X, Yang W, Ren J, Guo H, Long S, Chen J, Gao J. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode. Electrochimica Acta. 2012;80:346-353.
  13. Lavanya N, Sekar C, Murugan R, Ravi G. An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles. Materials Science and Engineering C. 2016;65:278-286.
  14. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry. 1979;101:19-28.
  15. Yang S, Qu L, Yang R, Li J, Yu L. Modified glassy carbon electrode with Nafion/MWNTs as a sensitive voltammetric sensor for the determination of paeonol in pharmaceutical and biological samples. Journal of Applied Electrochemistry. 2010;40(7):1371-1378.
  16. Pierini GD, Robledo SN, Zon MA, Di Nezio MS, Granero AM, Fernández H. Development of an electroanalytical method to control quality in fish samples based on an edge plane pyrolytic graphite electrode. Simultaneous determination of hypoxanthine, xanthine and uric acid. Microchemical Journal. 2018;138:58-64.
  17. Chang JL, Chang KH, Hu CC, Cheng WL, Zen JM. Improved voltammetric peak separation and sensitivity of uric acid and ascorbic acid at nanoplatelets of graphitic oxide. Electrochemistry Communications. 2010;12:596-599.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2019 Array