Higher-order nonclassical and entanglement properties in photon-added trio coherent state
PDF

Keywords

Photon-added trio coherent state
higher-order nonclassical properties
antibunching
sum squeezing
entanglement.

How to Cite

1.
Dat TQ, Duc TM. Higher-order nonclassical and entanglement properties in photon-added trio coherent state. hueuni-jns [Internet]. 2020Jun.22 [cited 2025Jan.7];129(1B):49-55. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/5685

Abstract

This paper studies the higher-order nonclassical and entanglement properties in the photon-added trio coherent state (PATCS). We use the criterion of higher-order single-mode antibunching to evaluate the role of the photon addition operation. Furthermore, the general criteria for detection of higher-order three-mode sum squeezing and entanglement features in the PATCS are also investigated. The results show that the photon addition operation to a trio coherent state can enhance the degree of both the higher-order single-mode antibunching and the higher-order three-mode sum squeezing and enlarge the value of the higher-order three-mode entanglement factor in the photon-added trio coherent state. In addition, the manifestation of the single-mode antibunching and the entanglement properties are more obvious with increasing the higher values of orders.

https://doi.org/10.26459/hueuni-jns.v129i1B.5685
PDF

References

  1. A Pathak A, Garcia M. Control of higher order antibunching. Applied Physics B. 2006;84(3):479-484.
  2. Aasi J, Abadie J, Abbott BP, Abbott R, Abbott TD, Abernathy MR, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics. 2013;7(8):613-619.
  3. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters. 1993;70(13):1895-1899.
  4. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Physical Review A. 1999;59(3):1829-1834.
  5. Agarwal GS, Tara K. Nonclassical properties of states generated by the excitations on a coherent state. Physical Review A. 1991;43(1):492-497.
  6. Zavatta A. Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light. Science. 2004;306(5696):660-662.
  7. Hong L, Guang-can G. Nonclassical properties of photon-added pair coherent states. Acta Physica Sinica (Overseas Edition). 1999;8(8):577-582.
  8. Truong DM, Nguyen HTX, Nguyen AB. Sum Squeezing, Difference Squeezing, Higher-Order Antibunching and Entanglement of Two-Mode Photon-Added Displaced Squeezed States. International Journal of Theoretical Physics. 2013;53(3):899-910.
  9. Wang S, Hou L, Chen X, Xu X. Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition. Physical Review A. 2015;91(6).
  10. Wang D, Li M, Zhu F, Yin Z, Chen W, Han Z, Guo G, Wang Q. Quantum key distribution with the single-photon-added coherent source. Physical Review A. 2014;90(6).
  11. Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement. Physical Review A. 1998;58(6):4394-4400.
  12. Nguyen BA, Kim J. Joint remote state preparation. Journal of Physics B: Atomic, Molecular and Optical Physics. 2008;41(9):095501.
  13. An NB, Duc TM. Trio coherent states. Journal of Optics B: Quantum and Semiclassical Optics. 2002;4(1):80-85.
  14. An NB. Multimode higher-order antibunching and squeezing in trio coherent states. Journal of Optics B: Quantum and Semiclassical Optics. 2002;4(3):222-227.
  15. Duc TM, Dat TQ, An NB, Kim J. Scheme for the generation of freely traveling optical trio coherent states. Physical Review A. 2013;88(2).
  16. Duc TM, Dat TQ. Enhancing nonclassical and entanglement properties of trio coherent states by photon-addition. Optik. 2020;210:164479.
  17. Sabapathy KK, Winter A. Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels. Physical Review A. 2017;95(6).
  18. Lee CT. Many-photon antibunching in generalized pair coherent states. Physical Review A. 1990;41(3):1569-1575.
  19. Schnabel R. Squeezed states of light and their applications in laser interferometers. Physics Reports. 2017;684:1-51.
  20. Braunstein SL, van Loock P. Quantum information with continuous variables. Reviews of Modern Physics. 2005;77(2):513-577.
  21. Hillery M, Zubairy MS. Entanglement Conditions for Two-Mode States. Physical Review Letters. 2006;96(5).
  22. Shchukin E, Vogel W. Inseparability Criteria for Continuous Bipartite Quantum States. Physical Review Letters. 2005;95(23).
  23. Bennett CH, Bernstein HJ, Popescu S, Schumacher B. Concentrating partial entanglement by local operations. Physical Review A. 1996;53(4):2046-2052.
  24. Agarwal GS, Biswas A. Quantitative measures of entanglement in pair-coherent states. Journal of Optics B: Quantum and Semiclassical Optics. 2005;7(11):350-354.
  25. Wu J, Liu S, Hu L, Huang J, Duan Z, Ji Y. Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition. Journal of the Optical Society of America B. 2015;32(11):2299.
  26. Duc TM, Noh J, Kim K. Entanglement criteria in inequality for pair and trio coherent states, VNU Journal of Science: Advances in Natural Sciences. 2008;9(2).
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 Array