NGHIÊN CỨU CƠ CHẾ PHẢN ỨNG CỦA 1-(4-METHOXYPHENYL)-2-SELENOUREA VÀ GỐC TỰ DO HOO BẰNG TÍNH TOÁN HÓA LƯỢNG TỬ

Đinh Quý Hương, Trần Dương, Phạm Cẩm Nam

DOI: http://dx.doi.org/10.26459/hueuni-jns.v129i1C.5695

Abstract


Lý thuyết phiếm hàm mật độ (DFT) đã được sử dụng để nghiên cứu khả năng chống oxy hóa của 1-(4-methoxyphenyl)-2-thiourea (CH3O-PSeU) trong phản ứng với gốc tự do HOO. Ba cơ chế phản ứng là chuyển nguyên tử hydro (HAT), trao đổi electron (SET), cộng gốc tự do (RAF) và các hằng số tốc độ phản ứng đã được khảo sát và tính toán. Kết quả cho thấy rằng, CH3O-PSeU chủ yếu phản ứng với HOO theo cơ chế HAT. Lượng sản phẩm tạo ra theo cơ chế này chiếm 99,99% tổng sản phẩm. N12-H13 được đánh giá là vị trí phản ứng chuyển nguyên tử hydro ưu tiên nhất với hằng số tốc độ cao có giá trị 4,39.108 M-1s-1.

Keywords


chất chống oxy hóa; HAT; SET; RAF; năng lượng phân ly liên kết; hằng số tốc độ

References


Battin E. E. and Brumaghim J. L. (2009), Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms, Cell Biochem. Biophys., 55 (1), pp. 1-23.

Biegler–König F. (2001), Aim2000, J. Comput. Chem., 22 (5), pp. 545-559.

Dzib E., Cabellos J. L., Ortíz-Chi F., Pan S., Galano A., and Merino G. (2018), Eyringpy: A program for computing rate constants in the gas phase and in solution, Int. J. Quantum Chem., 119 (2), pp. 1-10.

Eckart C. (1930), The Penetration of a Potential Barrier by Electrons, Phys. Rev., 35 (11), pp. 1303-1309.

Filarowski A. and Majerz I. (2008), AIM analysis of intramolecular hydrogen bonding in O-hydroxy aryl Schiff bases, J. Phys. Chem. A, 112 (14), pp. 3119-3126.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., et al. (2009), Gaussian 09, Gaussian, Inc., Wallingford CT, USA.

Galano A. and Alvarez-Idaboy J. R. (2013), A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity, J. Comput. Chem., 34 (28), pp. 2430-2445.

Huong D. Q., Duong T., and Nam P. C. (2019), An experimental and computational study of antioxidant activity of N-phenylthiourea and N-phenylselenourea analogues, Vietnam J. Chem., 57 (4), pp. 469-479.

Ingold K. U. and Pratt D. A. (2014), Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective, Chem. Rev., 114 (18), pp. 9022-9046.

Klein E., Lukeš V., Cibulková Z., and Polovková J. (2006), Study of N–H, O–H, and S–H bond dissociation enthalpies and ionization potentials of substituted anilines, phenols, and thiophenols, J. Mol. Struct., 758 (2), pp. 149-159.

Klein E., Lukeš V., and Ilčin M. (2007), DFT/B3LYP study of tocopherols and chromans antioxidant action energetics, Chem. Phys., 336 (1), pp. 51-57.

Marcus R. A. (1964), Chemical and Electrochemical Electron-Transfer Theory, Annu. Rev. Phys. Chem., 15 (1), pp. 155-196.

Marcus R. A. (1993), Electron transfer reactions in chemistry. Theory and experiment, Reviews of Modern Physics, 65 (3), pp. 599-610.

Mayer J. M., Hrovat D. A., Thomas J. L., and Borden W. T. (2002), Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene, Methoxyl/Methanol, and Phenoxyl/Phenol Self-Exchange Reactions, J. Am. Chem. Soc., 124 (37), pp. 11142-11147.

Musialik M. and Litwinienko G. (2005), Scavenging of dpph• Radicals by Vitamin E Is Accelerated by Its Partial Ionization: The Role of Sequential Proton Loss Electron Transfer, Org. Lett., 7 (22), pp. 4951-4954.

Nelsen S. F., Weaver M. N., Luo Y., Pladziewicz J. R., Ausman L. K., Jentzsch T. L., et al. (2006), Estimation of electronic coupling for intermolecular electron transfer from cross-reaction data, J. Phys. Chem. A, 110 (41), pp. 11665-11676.

Ngo T. C., Dao D. Q., Thong N. M., and Nam P.C. (2017), A DFT analysis on the radical scavenging activity of oxygenated terpenoids present in the extract of the buds of Cleistocalyx operculatus, RSC Adv., 7 (63), pp. 39686-39698.

Polovka M., Brezova V., and Stasko A. (2003), Antioxidant properties of tea investigated by EPR spectroscopy, Biophys. Chem., 106 (1), pp. 39-56.

Rimarčík J., Lukeš V., Klein E., and Ilčin M. (2010), Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine, J. Mol. Struct., 952 (1), pp. 25-30.

Rozas I., Alkorta I., and Elguero J. (2000), Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors, J. Am. Chem. Soc., 122 (45), pp. 11154-11161.

Serobatse K. R. N. and Kabanda M. M. (2017), An appraisal of the hydrogen atom transfer mechanism for the reaction between thiourea derivatives and •OH radical: A case-study of dimethylthiourea and diethylthiourea, Comput. Theor. Chem., 1101 pp. 83-95.

S. Y., Zhou H., Li X., Zhou J., and Chen K. (2019), Theoretical studies on the antioxidant activity of viniferifuran, New J. Chem., 43 (39), pp. 15736-15742.

Tabrizi L., Dao D. Q., and Vu T. A. (2019), Experimental and theoretical evaluation on the antioxidant activity of a copper(ii) complex based on lidocaine and ibuprofen amide-phenanthroline agents, RSC Advances, 9 (6), pp. 3320-3335.

Thong N. M., Quang D. T., Bui T. N. H., Dao D. Q., and Nam P. C. (2015), Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): A theoretical study, Chem. Phys. Lett., 625, pp. 30-35.

Thong N. M., Vo V. Q., Huyen T. L., Bay M. V., Tuan D, and Nam P. C. (2019), Theoretical Study for Exploring the Diglycoside Substituent Effect on the Antioxidative Capability of Isorhamnetin Extracted from Anoectochilus roxburghii, ACS Omega, 4 (12), pp. 14996-15003.

Urbaniak A., Szeląg M., and Molski M. (2013), Theoretical investigation of stereochemistry and solvent influence on antioxidant activity of ferulic acid, Comput. Theor. Chem., 1012, pp. 33-40.

Vo V. Q., Ho T. P., Thao P. T. T., and Nam P. C. (2019), Substituent effects on antioxidant activity of monosubstituted indole-3-carbinols: A DFT study, Vietnam J. Chem., 57 (6), pp. 728-734.

Vo V. Q., Nam P. C., Bay M. V., Thong N. M., Nguyen D. C., and Mechler A. (2018), Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans, Sci. Rep., 8 (1), pp. 1-10.

Wigner E. (1932), On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev., 40, pp. 749-759.

Wright J. S., Johnson E. R., and DiLabio G. A. (2001), Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants, J. Am. Chem. Soc., 123 (6), pp. 1173-1183.