Effect of biaxial strain on electronic and optical properties of GaSe monolayer
PDF (Vietnamese)

How to Cite

Vi VTT, Chương NV, Hiếu NV, Hiếu NN. Effect of biaxial strain on electronic and optical properties of GaSe monolayer. HueUni-JNS [Internet]. 2020Jul.3 [cited 2020Dec.5];129(1C):109-16. Available from: http://jos.hueuni.edu.vn/index.php/HUJOS-NS/article/view/5882


In this paper, using density functional theory, we systematically investigate the effect of biaxial strain on electronic and optical properties of GaSe two-dimensional layered material with monolayer structure. The calculations indicate that monolayer GaSe is an indirect semiconductor with a bandgap of 1.903 eV at equilibrium. The electronic properties of the GaSe monolayer, especially the bandgap energy, depend strongly on the biaxial strain. The GaSe monolayer has a wide absorption spectrum, from the visible light region to the near-ultraviolet one. Besides, the strain engineering significantly changes the intensity as well as the position of the peaks in the optical spectra of monolayer GaSe.

PDF (Vietnamese)


  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666-669. Doi: https://doi.org/10.1126/science.1102896
  2. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano. 2015;9:11509-11539. Doi: https://doi.org/10.1021/acsnano.5b05556
  3. Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, et al. Epitaxial growth of a silicene sheet. Appl Phys Lett. 2010;97:223109. Doi: https://doi.org/10.1063/1.3524215
  4. Woomer AH, Farnsworth TW, Hu J, Wells RA, Donley CL, Warren SC. Phosphorene: Synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano. 2015;9:8869. Doi: https://doi.org/10.1021/acsnano.5b02599
  5. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011;331:568-571. Doi: https://doi.org/10.1126/science.1194975
  6. Wang Z, Xu K, Li Y, Zhan X, Safdar M, Wang Q, et al. Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano. 2014;8(5):4859-65. Doi: https://doi.org/10.1021/nn500782n
  7. Mukherjee B, Cai Y, Tan HR, Feng YP, Tok ES, Sow CH. NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS Appl Mater Interfaces. 2013;5(19):9594-604. Doi: https:/doi.org/10.1021/am402550s
  8. Yagmurcukardes M, Senger R, Peeters F, Sahin H. Mechanical properties of monolayer GaS and GaSe crystals. Phys Rev B. 2016;94(24):245407. Doi: https://doi.org/10.1103/PhysRevB.94.245407
  9. Xu K, Yin L, Huang Y, Shifa TA, Chu J, Wang F, et al. Synthesis, properties and applications of 2D layered MIIIXIV (M = Ga, In; X= S, Se, Te) materials. Nanoscale. 2016;8(38):16802-18. Doi: https://doi.org/10.1039/C6NR05976G
  10. Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, et al. Synthesis and photoresponse of large GaSe atomic layers. Nano Lett. 2013;13(6):2777-81. Doi: https://doi.org/10.1021/nl4010089
  11. Demirci S, Avazlı N, Durgun E, Cahangirov S. Structural and electronic properties of monolayer group III monochalcogenides. Phys Rev B. 2017;95(11):115409. Doi: https://doi.org/10.1103/PhysRevB.95.115409
  12. Late DJ, Liu B, Luo J, Yan A, Matte HR, Grayson M, et al. GaS and GaSe ultrathin layer transistors. Adv Mater. 2012;24(26):3549-54. Doi: https://doi.org/10.1002/adma.201201361
  13. Ren C, Wang S, Tian H, Luo Y, Yu J, Xu Y, et al. First-principles investigation on electronic properties and band alignment of group III monochalcogenides. Sci Rep. 2019;9(1):1-6. Doi: https://doi.org/10.1038/s41598-019-49890-8
  14. Zhou X, Cheng J, Zhou Y, Cao T, Hong H, Liao Z, et al. Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc. 2015;137(25):7994-7. Doi: https://doi.org/10.1021/jacs.5b04305
  15. Venkateshvaran D, Althammer M, Nielsen A, Geprägs S, Rao MR, Goennenwein ST, et al. Epitaxial Znx Fe3¬–xO4 thin films: a spintronic material with tunable electrical and magnetic properties. Phys Rev B. 2009;79(13):134405. Doi: https://doi.org/10.1103/PhysRevB.79.134405
  16. Zhou S, Liu C-C, Zhao J, Yao Y. Monolayer group-III monochalcogenides by oxygen functionalization: a promising class of two-dimensional topological insulators. npj Quantum Mater. 2018;3(1):1-7. Doi: https://doi.org/10.1038/s41535-018-0089-0
  17. Khoa DQ, Nguyen DT, Nguyen CV, Vi VT, Phuc HV, Phuong LT, et al. Modulation of electronic properties of monolayer InSe through strain and external electric field. Chem Phys. 2019;516:213-7. Doi: https://doi.org/10.1016/j.chemphys.2018.09.022
  18. Pham KD, Vi VT, Thuan DV, Hieu NV, Nguyen CV, Phuc HV, et al. Tuning the electronic properties of GaS monolayer by strain engineering and electric field. Chem Phys. 2019;524:101-5. Doi: https://doi.org/10.1016/j.chemphys.2019.05.008
  19. Vi VT, Hieu NN, Hoi BD, Binh NT, Vu TV. Modulation of electronic and optical properties of GaTe monolayer by biaxial strain and electric field. Superlattices Microstruct. 2020;140:106435. Doi: https://doi.org/10.1016/j.spmi.2020.106435
  20. Huang L, Chen Z, Li J. Effects of strain on the band gap and effective mass in two-dimensional monolayer GaX (X= S, Se, Te). RSC Adv. 2015;5(8):5788-94. Doi: https://doi.org/10.1039/C4RA12107D
  21. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter. 2009;21(39):395502. Doi: https://doi.org/10.1088/0953-8984/21/39/395502.
  22. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. Doi: https://doi.org/10.1103/PhysRevLett.77.3865
  23. Grimme S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem. 2006;27(15):1787-99. Doi: https://doi.org/10.1002/jcc.20495
  24. Delin A, Ravindran P, Eriksson O, Wills J. Full‐potential optical calculations of lead chalcogenides. Int J Quantum Chem. 1998;69(3):349-58. Doi: https://doi.org/10.1002/(SICI)1097-461X(1998)69:3<349::AID-QUA13>3.0.CO;2-Y
  25. Karazhanov SZ, Ravindran P, Kjekshus A, Fjellvåg H, Svensson B. Electronic structure and optical properties of Zn X (X= O, S, Se, Te): A density functional study. Phys Rev B. 2007;75(15):155104. Doi: https://doi.org/10.1103/PhysRevB.75.155104
  26. Ravindran P, Delin A, Johansson B, Eriksson O, Wills J. Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2. Phys Rev B. 1999;59(3):1776. Doi: https://doi.org/10.1103/PhysRevB.59.1776
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 Array