Generation of plasmon-polaritons in epsilon-near-zero polaritonic metamaterial
PDF

Keywords

polaritonic metamaterials
epsilon-near-zero metamaterials
cylindrical composite mediums
optical nonlocality

How to Cite

1.
Anh NPQ. Generation of plasmon-polaritons in epsilon-near-zero polaritonic metamaterial. hueuni-jns [Internet]. 2021Oct.5 [cited 2024Nov.22];130(1B):35-41. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6180

Abstract

In this paper, we study the generation of plasmon-polaritons in the epsilon-near-zero nanorod polaritonic metamaterial by using nonlocal effective medium approximation (EMT). The results indicate that the nonlocal EMT is the simplest and most accurate approach to describe the characteristics of plasmon-polaritons at the epsilon-near-zero regime (e ≈ 0) in the polaritonic metamaterial. In contrast, the Maxwell-Garnett effective medium approximation is considered to be the most general method to study the generated plasmon-polaritons in metamaterials. An additional plasmon-polariton is found in the polaritonic metamaterial through the nonlocal EMT, which could not be found with the Maxwell-Garnett EMT. A flat longitudinal wave-number of the excited plasmon-polariton occurs in the angle of incident light ranging from –20 to 20°, leading to the collinear group-velocity vectors, and its energy will be carried in one direction. The findings can be used in some applications in optical communication.

https://doi.org/10.26459/hueunijns.v130i1B.6180
PDF

References

  1. Woolard DL, Jensen JO, editors. Terahertz Science and Technology for Military and Security Applications. Singapore: World Scientific Publishing Co. Pte. Ltd; 2007. 260 p.
  2. Smye SW, Chamberlain JM, Fitzgerald AJ, Berry E. The interaction between Terahertz radiation and biological tissue. Physics in Medicine and Biology. 2001;46(9):R101-R112. DOI: https://doi.org/10.1088/0031-9155/46/9/201
  3. Edwards T. Gigahertz and Terahertz Technologies for Broadband Communications. London (UK): Artech House; 2000. 272 p.
  4. Minier V, Durand G, Lagage PO, Talvard M, Travouillon T, Busso M, et al. Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array. EAS Publications Series. 2007;25:321-326. DOI: https://doi.org/10.1051/eas:2007114
  5. Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, et al. Optical negative refraction in bulk metamaterials of nanowires. Science. 2008 08 15;321(5891):930-930. DOI: https://doi.org/10.1126/science.1157566
  6. Veselago VG. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi. 1968 04 30;10(4):509-514. DOI: https://doi.org/10.1070/pu1968v010n04abeh003699
  7. Ashcroft NW, Mermin ND. Solid State Physics. New York: Holt, Rinehart and Winston; 1976. 826 p.
  8. Huang KC , Povinelli ML, Joannopoulos JD. Negative effective permeability in polaritonic photonic crystals. Applied Physics Letters. 2004;85(4):543-545. DOI: https://doi.org/10.1063/1.1775291
  9. Reyes-Coronado A, Acosta MF, Merino RI, Orera VM, Kenanakis G, Katsarakis N, et al. Self-organization approach for THz polaritonic metamaterials. Optics Express. 2012;20(13):14663. DOI: https://doi.org/10.1364/oe.20.014663
  10. Yannopapas V. Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres. Physical Review B. 2007;75(3). DOI: https://doi.org/10.1103/physrevb.75.035112
  11. Atkinson R, Hendren WR, Wurtz GA, Dickson W, Zayats AV, Evans P, et al. Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Physical Review B. 2006;73(23). DOI: https://doi.org/10.1103/physrevb.73.235402
  12. Lagarkov AN, Sarychev AK. Electromagnetic properties of composites containing elongated conducting inclusions. Physical Review B. 1996;53(10):6318-6336. DOI: https://doi.org/10.1103/physrevb.53.6318
  13. Elser J, Wangberg R, Podolskiy VA, Narimanov EE. Nanowire metamaterials with extreme optical anisotropy. Applied Physics Letters. 2006;89(26):261102. DOI: https://doi.org/10.1063/1.2422893
  14. Kurilkina SN, Anh NPQ. Features of plasmon-polaritons in polaritonic metamaterials. Nonlinear Dynamics and Applications. 2018;24:107-112.
  15. Pollard RJ, Murphy A, Hendren WR, Evans PR, Atkinson R, Wurtz GA, et al. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Physical Review Letters. 2009 03 27;102(12). DOI: https://doi.org/10.1103/physrevlett.102.127405
  16. Silveirinha MG. Nonlocal homogenization model for a periodic array of ϵ-negative rods. Physical Review E. 2006;73(4). DOI: https://doi.org/10.1103/physreve.73.046612.
  17. Silveirinha MG, Belov PA, Simovski CR. Subwavelength imaging at infrared frequencies using an array of metallic nanorods. Physical Review B. 2007;75(3). DOI: https://doi.org/10.1103/physrevb.75.035108
  18. Wells BM, Zayats AV, Podolskiy VA. Nonlocal optics of plasmonic nanowire metamaterials. Physical Review B. 2014;89(3). DOI: https://doi.org/10.1103/physrevb.89.035111
  19. Maslovski SI, Silveirinha MG. Nonlocal permittivity from a quasistatic model for a class of wire media. Physical Review B. 2009;80(24). DOI: https://doi.org/10.1103/physrevb.80.245101
  20. Foteinopoulou S, Kafesaki M, Economou EN, Soukoulis CM. Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials. Physical Review B. 2011;84(3). DOI: https://doi.org/10.1103/physrevb.84.035128
  21. Schall M, Helm H, Keiding SR. Far infrared properties of electro-optic crystals measured by thz time-domain spectroscopy. International Journal of Infrared and Millimeter Waves. 1999;20(4):595-604. DOI: https://doi.org/10.1023/A:1022636421426
  22. Glisson A. Electromagnetic mixing formulas and applications. IEEE Antennas and Propagation Magazine. 2000;42(3):72-73. DOI: https://doi.org/10.1109/map.2000.848950
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array