Sintering behavior and physical properties of Bi0.5(Na1–xKx)0.5SnO3 lead-free ceramics
PDF

Keywords

Lead-free ceramics
BNKS
electromechanical coupling factor
sintering
dielectric constant

How to Cite

1.
Tho NT, Minh LN, Tu LTU, Trang DTH, Dinh LP, Huan NLH, Thao LTP, Hue NT, Hau NM. Sintering behavior and physical properties of Bi0.5(Na1–xKx)0.5SnO3 lead-free ceramics. hueuni-jns [Internet]. 2021Oct.5 [cited 2024Nov.25];130(1B):13-20. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6191

Abstract

In this study, Bi0.5(Na1–xKx)0.5SnO3 (BNKS) ceramics (x = 0, 0.1, 0.2, 0.3, and 0.4) were fabricated via ultrasound wave before milling. The time of ball milling decreased from 20 to 1 h. The X-ray diffraction patterns show that the BNKS has a single-phase structure. When the potassium content increases, the phase structure of the ceramics changes from rhombohedral to tetragonal. When sintered at 1100 °C and x = 0.2, the ceramics’ physical properties are the best with the mass density of 5.59 g/cm3, the electromechanical coupling constants kp of 0,31 and kt of 0.27, the remanent polarization of      11.9 µC/cm; the dielectric constant εr of 1131, and the highest dielectric constant emax of 4800.

https://doi.org/10.26459/hueunijns.v130i1B.6191
PDF

References

  1. Xu Y. Ferroelectric Materials and Their Applications. Amsterdam-London-New York-Tokyo: North-Holland; 1991.
  2. Luan NDT, Vuong LD, Chuong TV, Tho NT. Structure and Physical Properties of PZT-PMnN-PSN Ceramics near the Morphological Phase Boundary. Advances in Materials Science and Engineering. 2014;2014:1-8. DOI: https://doi.org/10.1155/2014/821404
  3. Tho NT, Vuong LD. Fabrication and characterization of PZT-PMnN-PSbN ceramics doped with ZnO. Hue Universiy Journal of Science: Natural Science. 2020; 129(1D):5-13. DOI: https://doi.org/10.26459/hueuni-jns.v129i1D.5771
  4. Inoue A, Nguyen TT, Noda M, Okuyama M. Low temperature preparation of bismuth-related ferroelectrics by hydrothermal synthesis. 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics. 2007;136-137. DOI: https://doi.org/10.1109/isaf.2007.4393193
  5. Nguyen TT, Kanashima T, Okuyama M. Leakage current reduction and ferroelectric property of BiFe1-xCoxO3 thin films prepared by chemical solution deposition using rapid thermal annealing. MRS Proceedings. 1199(1):114-119. DOI: https://doi.org/10.1557/proc-1199-f06-19
  6. Tho NT, Inoue A, Noda M, Okuyama M, Low temperature preparation of bismuth-related ferroelectrics powder and thin films by hydrothermal synthesis. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2007;54(12):2603-2607. DOI: https://doi.org/10.1109/tuffc.2007.586
  7. Tho NT, Kanashima T, Sohgawa M, Ricinschi D, Noda M, Okuyama M. Ferroelectric properties of Bi1.1Fe1-xCoxO3 thin films prepared by chemical solution deposition using iterative rapid thermal annealing in N2 and O2. Japanese Journal of Applied Physics. 2010;49(9S):09MB05. DOI: https://doi.org/10.1143/jjap.49.09mb05
  8. Tho NT, Kanashima T, Okuyama M. Leakage current reduction and ferroelectric property of BiFe1-xCoxO3 thin films prepared by chemical solution deposition using iterative rapid thermal annealing at approximately 520 °C. Japanese Journal of Applied Physics. 2010 09 21;49(9R):095803. DOI: https://doi.org/10.1143/jjap.49.095803
  9. Truong-Tho N, Nghi-Nhan NT. Fabrication by annealing at approximately 1030 °C and electrical characterization of lead-free (1-x)Bi0.5K0.5TiO3–xBa(Fe0.5Nb0.5)0.05Ti0.95O3 piezoelectric ceramics. Journal of Electronic Materials. 2017;46(6):3585-3591. DOI: https://doi.org/10.1007/s11664-017-5396-x
  10. Tho NT. Fabrication and electrical characterization of leadfree BiFe0.91(Mn0.47Ti0.53)0.09O3–BaTiO3 ceramics. Hue University Journal of Science: Natural Science. 2020;129(1B):63-70. DOI: https://doi.org/10.26459/hueuni-jns.v129i1b.5746
  11. Kozlenko DP, Dang NT, Madhogaria RP, Thao LTP, Kichanov SE, Tran N, et al. Competing magnetic states in multiferroic BaYFeO4: A high magnetic field study. Physical Review Materials. 2021;5(4). DOI: https://doi.org/10.1103/physrevmaterials.5.044407
  12. Truong-Tho N, Vuong LD. Effect of sintering temperature on the dielectric, ferroelectric and energy storage properties of SnO2-Doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics. Journal of Advanced Dielectrics. 2020;10(04):2050011. DOI: https://doi.org/10.1142/s2010135x20500113
  13. Vuong LD, Quang DA, Quan PV, Truong-Tho N. Fabrication of Bi0.5(Na0.4K0.1)TiO3 lead-free ceramics using reactive templated grain growth method for improving their preferred degree of orientation, dielectric, and ferroelectric properties. Journal of Electronic Materials. 2020 08 26;49(11):6465-6473. DOI: https://doi.org/10.1007/s11664-020-08396-0
  14. Truong-Tho N, Vuong LD. Sintering behavior and enhanced energy storage performance of SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics. Journal of Electroceramics. 2020. DOI: https://doi.org/10.1007/s10832-020-00224-5
  15. Vuong LD, Tho NT. The sintering behavior and physical properties of Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics. International Journal of Materials Research. 2017;108(3):222-227. DOI: https://doi.org/10.3139/146.111465
  16. Vuong LD, Truong-Tho N. Effect of ZnO nanoparticles on the sintering behavior and physical properties of Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics. Journal of Electronic Materials. 2017;46(11):6395-6402. DOI: https://doi.org/10.1007/s11664-017-5665-8
  17. Truong-Tho N, Le Vuong D. Study on the strain behavior and piezoelectric properties of lead-free Bi0.5(Na0.8K0.2)0.5TiO3 ceramics modified with Sn4+ ions. Journal of Materials Science: Materials in Electronics. 2021. DOI: https://doi.org/10.1007/s10854-021-06215-8
  18. Mokhtari O, Nishikawa H. Transient liquid phase bonding of Sn–Bi solder with added Cu particles, Journal of Materials Science: Materials in Electronics. 2016;27(5):4232-4244. DOI: https://doi.org/10.1007/s10854-016-4287-x
  19. Izumi M, Yamamoto K, Suzuki M, Noguchi Y, Miyayama M. Large electric-field-induced strain in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 solid solution single crystals. Applied Physics Letters. 2008;93(24):242903. DOI: https://doi.org/10.1063/1.3046791
  20. Wang B, Luo L, Ni F, Du P, Li W, Chen H. Piezoelectric and ferroelectric properties of (Bi1−xNa0.8K0.2Lax)0.5TiO3 lead-free ceramics, Journal of Alloys and Compounds. 2012;526:79-84. DOI: https://doi.org/10.1016/j.jallcom.2012.02.114
  21. Kang SH, Ahn CW, Lee HJ, Kim IW, Park EC, Lee JS. Dielectric and pyroelectric properties of Li2CO3 doped 0.2Pb(Mg1/3Nb2/3)O3–0.5Pb(Zr0.48Ti0.52)O3–0.3Pb(Fe1/3Nb2/3)O3 ceramics. Journal of Electroceramics. 2008;21(1-4):855-858. DOI: https://doi.org/10.1007/s10832-008-9507-1
  22. Sasaki A, Chiba T, Mamiya Y, Otsuki E. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Japanese Journal of Applied Physics. 1999;38(Part 1, No. 9B):5564-5567. DOI: https://doi.org/10.1143/jjap.38.5564
  23. Yoo J, Lee S. Piezoelectric and dielectric properties of low temperature sintered Pb(Mn1/3Nb2/3)0.02 (Ni1/3Nb2/30.12(ZrxTi1-x)0.86O3 system ceramics. Transactions on Electrical and Electronic Materials. 2009;10(4):121-124. DOI: https://doi.org/10.4313/TEEM.2009.10.4.121
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array