Numerical simulation of all-normal dispersion visible to near-infrared supercontinuum generation in photonic crystal fibers with core filled chloroform


Photonic crystal fiber
supercontinuum generation

How to Cite

Vo TMN, Ho DQ, Le TT, Le TG, Le CT, Chu VL, Nguyen TT, Hoang VT, Nguyen TD, Le HV. Numerical simulation of all-normal dispersion visible to near-infrared supercontinuum generation in photonic crystal fibers with core filled chloroform. hueuni-jns [Internet]. 2021Jun.29 [cited 2021Sep.24];130(1B):43-51. Available from:


This study proposes a photonic crystal fiber made of fused silica glass, with the core infiltrated with chloroform as a new source of supercontinuum (SC) spectrum. We numerically study the guiding properties of the fiber structure in terms of characteristic dispersion and mode area of the fundamental mode. Based on the results, we optimized the structural geometries of the CHCl3-core photonic crystal fiber to support the broadband SC generations. The fiber structure with a lattice constant of 1 μm, a filling factor of 0.8, and the diameter of the first-ring air holes equaling 0.5 μm operates in all-normal dispersion. The SC with a broadened spectral bandwidth of 0.64 to 1.80 μm is formed by using a pump pulse with a wavelength of 850 nm, 120 fs duration, and power of 0.833 kW. That fiber would be a good candidate for all-fiber SC sources as cost-effective alternative to glass core fibers.


  1. Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher AF, et al. Submicrometer axial resolution optical coherence tomography. Optics Letters. 2002;27(20): 1800-1802.
  2. Heidt AM, Rothhardt J, Hartung A, Bartelt H, Rohwer EG, Limpert J, et al. High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber. Optics Express. 2011;19(15): 13873-13879.
  3. Heidt AM, Hartung A, Bosman GW, Krok P, Rohwer EG, Schwoerer H, et al. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Optics Express. 2011;9(4):3775-3787.
  4. Stepniewski G, Klimczak M, Bookey H, Siwicki B, Pysz D, Stepien R, et al. Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fber pumped near 1300 nm. Laser Physics Letter. 2014;11(5):055103.
  5. Medjouri A, Abed D, Ziane O, Simohamed LM. Design and optimization of As2S5 chalcogenide channel waveguide for coherent mid-infrared supercontinuum generation. Optik. 2018;154(2018): 811-820.
  6. Hansen KP. Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express. 2003;11(13):1503-1509.
  7. Saitoh K, Florous NJ, Koshiba M. Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach. Optics Letters. 2006;31(10):26-28.
  8. Poletti F, Finazzi V, Monro TM, Broderick NGR, Tse V, Richardson DJ. Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. Optics Express. 2005;13(10):3728-3736.
  9. Balani H, Singh G, Tiwari M, Janyani V, Ghunawat AK. Supercontinuum generation at 1.55 μm in As2S3 core photonic crystal fiber. Applied Optics. 2018;57(13): 3524-3533.
  10. Jiao K, Yao J, Zhao Z, Wang X, Si N, Wang X, et al. Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber. Optics Express. 2019;27(3):2036-2043.
  11. Churin D, Nguyen TN, Kieu K, Norwood RA, Peyghambarian N. Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2. Optics Material Express. 2013;3(9):1358-1364.
  12. Hoang VT, Kasztelanic R, Anuszkiewicz A, Stepniewski G, Filipkowski A, Ertman S, et al. All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene. Optics Material Express. 2018;8(11):2159-3930.
  13. Hoang VT, Kasztelanic R, Filipkowski A, Stepniewski G, Pysz D, Klimczak M, et al. Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride. Optics Material Express. 2019;9(5): 2159-3930.
  14. Van HL, Long VC, Nguyen HT, Nguyen AM, Buczynski R, Kasztelanic R. Application of ethanol infiltration for ultra-flatted normal dispersion in fused silica photonic crystal fibers. Laser Physics. 2018;28(11):115106.
  15. Van LC, Hoang VT, Long VC, Borzycki K, Xuan KD, Quoc VT, et al. Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Physics. 2020; 30(3):035105.
  16. Canh TL, Hoang VT, Van HL, Pysz D, Long VC, Dinh TB, et al. Supercontinuum generation in all-normal dispersion suspended core fiber infiltrated with water. Optical Materials Express. 2020;10(7):1733-1748.
  17. Pniewski J, Stefaniuk T, Van HL, Long VC, Van LC, Kasztelanic R, et al. Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. Applied Optics. 2016;55(19):5033-5040.
  18. Van HL, Buczynski R, Long VC, Trippenbach M, Borzycki K, Nguyen AM, et al. Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture. Optics Communications. 2018;407:417-422.
  19. He J, Chen H, Hu J, Zhou J, Zhang Y, Kovach A, et al. Nonlinear nanophotonic devices in the ultraviolet to visible wavelength range. Nanophotonics. 2020;9(12):3781-3804.
  20. Bozolan A, de Matos CJS, Cordeiro CMB, dos Santos EM, Travers J. Supercontinuum generation in a water-core photonic crystal fiber, Optics Express. 2008;6(13):9671-9676.
  21. Karasawa N. Dispersion properties of liquid-core photonic crystal fibers. Applied Optics. 2012;51(21): 5259-5265.
  22. Kedenburg S, Vieweg M, Gissibl T, Giessen H. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Optical Materials Express. 2012;2(1):1588-1611.
  23. Van LC, Anuszkiewicz A, Ramaniuk A, Kasztelanic R, Xuan KD, Long VC, et al. Supercontinuum generation in photonic crystal fibres with core filled with toluene. Journal off Optics. 2017;19(12):125604.
  24. Agrawal GP. Nonlinear fiber optics. Springer. 2000.
  25. Lee S, Jen M, Pang Y. Twisted Intramolecular Charge Transfer State of a “Push-Pull” Emitter. International Journal of Molecular Sciences. 2020;21(21):7999.
  26. Wanga C, Lia W, Lia N, Wang W. Numerical simulation of coherent visible-to-near-infrared supercontinuum generation in the CHCl3-filled photonic crystal fiber with 1.06 μm pump pulses, Optics & Laser Technology. 2017;88(2017):215-221.
  27. Ansys Canada Ltd. Lumerical Mode Solutions. Version 7.12.1731. Vancouver: Ansys Canada Ltd; 2021.
  28. Stępniewski G, Pniewski J, Pysz D, Cimek J, Stępień R, Klimczak M, et al. Development of dispersion-optimized photonic crystal fibers based on heavy metal oxide glasses for broadband infrared supercontinuum generation with fiber lasers. Sensors (Basel). 2018;18(12):4127.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array