Isolation, selection, and evaluation of the effectiveness of some entomopathogenic fungi strains on the control of root mealybugs (Pseudococcidae) attacking black pepper


hồ tiêu
rệp sáp hại rễ hồ tiêu
nấm kí sinh côn trùng
Piper nigrum
root mealybugs
entomopathogenic fungi
Đak Lak


We isolated ten trains of parasitic mealybug damaging the root of black pepper. One of the strains is highly pathogenic to both nymphs and adults of root mealybug. In the laboratory, the strain’s effectiveness against black pepper root mealybugs is different, depending on conidial concentrations. At 1 × 108 and 1 × 109 conidia/mL concentrations, the effectiveness is 946.7 and 996.3 in the nymph stage and 951.9 and 1001.9 in the adult stage. At 1 × 107, 1 × 106 and 1 × 105 conidia/mL concentrations, the effectiveness is below 793 in the stages.


  1. Nguyễn Thị Chắt (2008), Rệp sáp hại cây trồng và biện pháp phòng trị. Nxb. Nông nghiệp, TP. Hồ Chí Minh.
  2. Devasahayam, S., Koya, K. A., Anandaraj, M., Thomas, T., & Preethi, N. (2009), Distribution and ecology of root mealybugs associated with black pepper (Piper nigrum Linnaeus) in Karnataka and Kerala, India, Entomon, 34(3), 147–154.
  3. Najitha U., Susannamma K., Mathew M.P, Anjana C., (2018), Root melybugs and associated fauna in back pepper, Indian Journal of Entomology, 80 (3), 922–925.
  4. Litwin, A., Nowak, M., & Różalska, S. (2020), Entomopathogenic fungi: unconventional applications, Reviews in Environmental Science and Bio/Technology, 19(1), 23–42.
  5. Jaber, S., Mercier, A., Knio, K., Brun, S., & Kambris, Z. (2016), Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen, Parasites & vectors, 9(1), 1–10.
  6. Ramanujam, B., Poornesha, B., Yatish, K. R., & Renuka, S. (2015), Evaluation of Pathogenicity of Different Isolates of Metarhizium anisopliae (Metchnikoff) Sorokin against maize stem borer, Chilo partellus (Swinhoe) using laboratory bioassays, Biopestic. Int, 11, 89–95.
  7. Abbott, W. S. (1925), A method of computing the effectiveness of an insecticide, J. econ. Entomol, 18(2), 265–267.
  8. Madden, L.V., Hughes, G., and van den Bosch, F. (2007), The Study of Plant Disease Epidemics, The American Phytopathological Society, APS Press St. Paul, Minnesota.
  9. Monzón, A., Klingen, I., Guharay, F., & Papierok, B. (2007), Naturally occurring Beauveria bassiana in Hypothenemus hampei populations in unsprayed coffee fields, IOBC WPRS BULLETIN, 30(1), 131.
  10. Sepúlveda, M., Vargas, M., Gerding, M., Ceballos, R., & Oyarzúa, P. (2016), Molecular, morphological and pathogenic characterization of six strains of Metarhizium spp. (Deuteromycotina: Hyphomycetes) for the control of Aegorhinus superciliosus (Coleoptera: Curculionidae), Chilean journal of agricultural research, 76(1), 77–83.
  11. Kumar, C. S., Jacob, T. K., Devasahayam, S., Geethu, C., & Hariharan, V. (2021), Characterization and biocontrol potential of a naturally occurring isolate of Metarhizium pingshaense infecting Conogethes punctiferalis, Microbiological Research, 243, 126645.
  12. Kirubakaran, S. A., Abdel-Megeed, A., & Senthil-Nathan, S. (2018), Virulence of selected indigenous Metarhizium pingshaense (Ascomycota: Hypocreales) isolates against the rice leaffolder, Cnaphalocrocis medinalis (Guenèe)(Lepidoptera: Pyralidae), Physiological and molecular plant pathology, 101, 105–115.
  13. Huang, P., Yao, J., Lin, Y., & Yu, D. (2021), Pathogenic characteristics and infection‐related genes of Metarhizium anisopliae FM‐03 infecting Planococcus lilacinus, Entomologia Experimentalis et Applicata, 169(5), 437–448.