Microencapsulation of asiaticoside from Centella asiatica extract by spray drying
PDF (Vietnamese)

Keywords

microencapsulation
spray drying
asiaticoside
gotu kola
Centella asiatica vi bao
sấy phun
asiaticoside
rau má

Abstract

Asiaticoside là một triterpene chiết xuất rau má. Nhiều nghiên cứu đã chứng minh dược tính của hợp chất này trong việc chữa lành vết thương, cải thiện trí nhớ và cải thiện da. Tuy nhiên, độ tan kém của nó hạn chế khả năng ứng dụng trong các chế phẩm nông nghiệp. Để cải thiện độ tan của asiaticoside, chúng tôi tiến hành kỹ thuật vi bao bằng phương pháp sấy phun thông qua đánh giá ảnh hưởng của loại chất mang, nồng độ chất khô và nhiệt độ sấy đến hàm lượng asiaticoside có trong bột rau má. Kết quả cho thấy tỉ lệ chất mang cyclodextrin/maltodextrin 1:8, nồng độ chất khô 21%, nhiệt độ sấy phun 190 °C cho hàm lượng asiaticoside cao nhất (1,0634 mg·g–1). Bột vi bao có độ ẩm, độ tan, màu sắc và hàm lượng asiaticoside ổn định sau sáu tháng bảo quản ở nhiệt độ thường.

https://doi.org/10.26459/hueunijard.v131i3D.6784
PDF (Vietnamese)

References

  1. https://quangdien.thuathienhue.gov.vn/?gd=3&cn=32&tc=5243], cập nhật ngày 22/2/2022.
  2. Maquart, F. X., Chastang, F., Simeon, A., Birembaut, P., Gillery, P. & Wegrowski, Y. (1999), Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds, European journal of dermatology, 9(4), 289–96.
  3. Lee, J. H., Kim, H. L., Lee, M. H., You, K. E., Kwon, B. J., Seo, H. J. & Park, J. C. (2012), Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model, Phytomedicine, 19(13), 1223–1227.
  4. Chandrika, U. G. & Kumara, P. A. P. (2015), Gotu Kola (Centella asiatica): nutritional properties and plausible health benefits, Advances in food and nutrition research, 76, 125–157.
  5. Boonyarattanasoonthorn, T., Kijtawornrat, A., Songvut, P., Nuengchamnong, N., Buranasudja, V. & Khemawoot, P. (2022), Increase water solubility of Centella asiatica extract by indigenous bioenhancers could improve oral bioavailability and disposition kinetics of triterpenoid glycosides in beagle dogs, Scientific reports, 12(1), 1–11.
  6. Zheng, X. F. & Lu, X. Y. (2011), Measurement and correlation of solubilities of asiaticoside in water, methanol, ethanol, n-propanol, n-butanol, and a methanol+ water mixture from (278.15 to 343.15) K, Journal of Chemical & Engineering Data, 56(3), 674–677.
  7. Hoàng Văn Chước (1999), Kỹ thuật sấy, Nxb. Khoa học và kỹ thuật.
  8. Furuta, T. & Neoh, T. L. (2021), Microencapsulation of food bioactive components by spray drying: A review, Drying Technology, 39(12), 1800–1831.
  9. Saloko, S., Handito, D. & Aeni, N. N. (2020, March), Encapsulation of Gotu Kola Leaf (Centella asiatica) Flavonoid in Instant Powder Drink Using Maltodextrin, In 5th International Conference on Food, Agriculture and Natural Resources (FANRes 2019), 156–163, Atlantis Press.
  10. Azhar, M. D., Ibrahim, U. K., Zaki, N. A. M. & Hashib, S. A. (2020), The Effect of maltodextrin concentration and inlet air temperature on spray dried Centella asiatica L. powder. In IOP Conference Series: Materials Science and Engineering, 736(3), 032017, IOP Publishing.
  11. Verma, R. K., Bhartariya, K. G., Gupta, M. M. & Kumar, S. (1999), Reverse‐phase high performance liquid chromatography of asiaticoside in Centella asiatica, Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 10(4), 191–193.
  12. Largo-Avila, E., Cortes-Rodríguez, M. & Ciro Velásquez, H. J. (2015), Influence of maltodextrin and spray drying process conditions on sugarcane juice powder quality, Revista Facultad Nacional de Agronomía Medellín, 68(1), 7509–7520.
  13. Shiga, H., Yoshii, H., Ohe, H., Yasuda, M., Furuta, T., Kuwahara, H., et al. (2004), Encapsulation of shiitake (Lenthinus edodes) flavors by spray drying, Bioscience, biotechnology, and biochemistry, 68(1), 66–71.
  14. Watson, M. A., Lea, J. M. & Bett‐Garber, K. L. (2017), Spray drying of pomegranate juice using maltodextrin/cyclodextrin blends as the wall material, Food science & nutrition, 5(3), 820–826.
  15. Escobar-Avello, D., Avendaño-Godoy, J., Santos, J., Lozano-Castellón, J., Mardones, C., von Baer, D., et al. (2021), Encapsulation of phenolic compounds from a grape cane pilot-plant extract in hydroxypropyl beta-cyclodextrin and maltodextrin by spray drying, Antioxidants, 10(7), 1130.
  16. Koeda, T., Wada, Y., Neoh, T. L., Wada, T., Furuta, T. & Yoshii, H. (2014), Encapsulation of retinyl palmitate with a mixture of cyclodextrins and maltodextrins by the kneading method, Food Science and Technology Research, 20(3), 529–535.
  17. Liu, X. D., Furuta, T., Yoshii, H., Linko, P. & Coumans, W. J. (2000), Cyclodextrin encapsulation to prevent the loss of l-menthol and its retention during drying, Bioscience, biotechnology, and biochemistry, 64(8), 1608–1613.
  18. Niamnuy, C., Charoenchaitrakool, M., Mayachiew, P. & Devahastin, S. (2013), Bioactive compounds and bioactivities of Centella asiatica (L.) Urban prepared by different drying methods and conditions, Drying Technology, 31(16), 2007–2015.
  19. Lingua, M. S., Salomón, V., Baroni, M. V., Blajman, J. E., Maldonado, L. M. & Páez, R. (2020), Effect of Spray Drying on the Microencapsulation of Blueberry Natural Antioxidants, In Multidisciplinary Digital Publishing Institute Proceedings, 70(1), 26.
  20. Tuyen, C. K., Nguyen, M. H. & Roach, P. D. (2010), Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder, Journal of food engineering, 98(3), 385–392.
  21. Anandharamakrishnan, C. (2015), Spray drying techniques for food ingredient encapsulation, John Wiley & Sons.
  22. Başyiğit, B., Sağlam, H., Kandemir, Ş., Karaaslan, A. & Karaaslan, M. (2020), Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity, Powder Technology, 364, 654–663.
  23. Gonzalez-Palomares, S., Estarrón-Espinosa, M., Gómez-Leyva, J. F. & Andrade-González, I. (2009), Effect of the temperature on the spray drying of roselle extracts (Hibiscus sabdariffa L.), Plant foods for human nutrition, 64(1), 62–67.
  24. Östbring, K., Sjöholm, I., Rayner, M. & Erlanson-Albertsson, C. (2020), Effects of storage conditions on degradation of chlorophyll and emulsifying capacity of thylakoid powders produced by different drying methods, Foods, 9(5), 669.
  25. Ferrari, C. C., Germer, S. P. M. & de Aguirre, J. M. (2012), Effects of spray-drying conditions on the physicochemical properties of blackberry powder, Drying Technology, 30(2), 154–163.
  26. Bakowska-Barczak, A. M. & Kolodziejczyk, P. P. (2011), Black currant polyphenols: Their storage stability and microencapsulation. Industrial crops and products, 34(2), 1301–1309.