VI BAO ASIATICOSIDE TỪ DỊCH CHIẾT RAU MÁ BẰNG KỸ THUẬT SẤY PHUN
PDF

Từ khóa

microencapsulation
spray drying
asiaticoside
gotu kola
Centella asiatica vi bao
sấy phun
asiaticoside
rau má

Tóm tắt

Asiaticoside is a triterpene found in gotu kola. Numerous studies have demonstrated the medicinal properties of asiaticoside in wound healing, memory improvement, and skin improvement. However, poor solubility limits its applicability in agricultural products. To improve the solubility, we conducted the microencapsulation process by spray drying. The results show that a cyclodextrin/maltodextrin 1:8 wall, a dry mass content of 21%, and a drying temperature of 190 °C provide the capsules with the highest asiaticoside content (1.0634 mg·g–1). The microcapsules have stable moisture, solubility, colour and the asiaticoside content after six months of storage at ambient temperature.

https://doi.org/10.26459/hueunijard.v131i3D.6784
PDF

Tài liệu tham khảo

  1. https://quangdien.thuathienhue.gov.vn/?gd=3&cn=32&tc=5243], cập nhật ngày 22/2/2022.
  2. Maquart, F. X., Chastang, F., Simeon, A., Birembaut, P., Gillery, P. & Wegrowski, Y. (1999), Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds, European journal of dermatology, 9(4), 289–96.
  3. Lee, J. H., Kim, H. L., Lee, M. H., You, K. E., Kwon, B. J., Seo, H. J. & Park, J. C. (2012), Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model, Phytomedicine, 19(13), 1223–1227.
  4. Chandrika, U. G. & Kumara, P. A. P. (2015), Gotu Kola (Centella asiatica): nutritional properties and plausible health benefits, Advances in food and nutrition research, 76, 125–157.
  5. Boonyarattanasoonthorn, T., Kijtawornrat, A., Songvut, P., Nuengchamnong, N., Buranasudja, V. & Khemawoot, P. (2022), Increase water solubility of Centella asiatica extract by indigenous bioenhancers could improve oral bioavailability and disposition kinetics of triterpenoid glycosides in beagle dogs, Scientific reports, 12(1), 1–11.
  6. Zheng, X. F. & Lu, X. Y. (2011), Measurement and correlation of solubilities of asiaticoside in water, methanol, ethanol, n-propanol, n-butanol, and a methanol+ water mixture from (278.15 to 343.15) K, Journal of Chemical & Engineering Data, 56(3), 674–677.
  7. Hoàng Văn Chước (1999), Kỹ thuật sấy, Nxb. Khoa học và kỹ thuật.
  8. Furuta, T. & Neoh, T. L. (2021), Microencapsulation of food bioactive components by spray drying: A review, Drying Technology, 39(12), 1800–1831.
  9. Saloko, S., Handito, D. & Aeni, N. N. (2020, March), Encapsulation of Gotu Kola Leaf (Centella asiatica) Flavonoid in Instant Powder Drink Using Maltodextrin, In 5th International Conference on Food, Agriculture and Natural Resources (FANRes 2019), 156–163, Atlantis Press.
  10. Azhar, M. D., Ibrahim, U. K., Zaki, N. A. M. & Hashib, S. A. (2020), The Effect of maltodextrin concentration and inlet air temperature on spray dried Centella asiatica L. powder. In IOP Conference Series: Materials Science and Engineering, 736(3), 032017, IOP Publishing.
  11. Verma, R. K., Bhartariya, K. G., Gupta, M. M. & Kumar, S. (1999), Reverse‐phase high performance liquid chromatography of asiaticoside in Centella asiatica, Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 10(4), 191–193.
  12. Largo-Avila, E., Cortes-Rodríguez, M. & Ciro Velásquez, H. J. (2015), Influence of maltodextrin and spray drying process conditions on sugarcane juice powder quality, Revista Facultad Nacional de Agronomía Medellín, 68(1), 7509–7520.
  13. Shiga, H., Yoshii, H., Ohe, H., Yasuda, M., Furuta, T., Kuwahara, H., et al. (2004), Encapsulation of shiitake (Lenthinus edodes) flavors by spray drying, Bioscience, biotechnology, and biochemistry, 68(1), 66–71.
  14. Watson, M. A., Lea, J. M. & Bett‐Garber, K. L. (2017), Spray drying of pomegranate juice using maltodextrin/cyclodextrin blends as the wall material, Food science & nutrition, 5(3), 820–826.
  15. Escobar-Avello, D., Avendaño-Godoy, J., Santos, J., Lozano-Castellón, J., Mardones, C., von Baer, D., et al. (2021), Encapsulation of phenolic compounds from a grape cane pilot-plant extract in hydroxypropyl beta-cyclodextrin and maltodextrin by spray drying, Antioxidants, 10(7), 1130.
  16. Koeda, T., Wada, Y., Neoh, T. L., Wada, T., Furuta, T. & Yoshii, H. (2014), Encapsulation of retinyl palmitate with a mixture of cyclodextrins and maltodextrins by the kneading method, Food Science and Technology Research, 20(3), 529–535.
  17. Liu, X. D., Furuta, T., Yoshii, H., Linko, P. & Coumans, W. J. (2000), Cyclodextrin encapsulation to prevent the loss of l-menthol and its retention during drying, Bioscience, biotechnology, and biochemistry, 64(8), 1608–1613.
  18. Niamnuy, C., Charoenchaitrakool, M., Mayachiew, P. & Devahastin, S. (2013), Bioactive compounds and bioactivities of Centella asiatica (L.) Urban prepared by different drying methods and conditions, Drying Technology, 31(16), 2007–2015.
  19. Lingua, M. S., Salomón, V., Baroni, M. V., Blajman, J. E., Maldonado, L. M. & Páez, R. (2020), Effect of Spray Drying on the Microencapsulation of Blueberry Natural Antioxidants, In Multidisciplinary Digital Publishing Institute Proceedings, 70(1), 26.
  20. Tuyen, C. K., Nguyen, M. H. & Roach, P. D. (2010), Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder, Journal of food engineering, 98(3), 385–392.
  21. Anandharamakrishnan, C. (2015), Spray drying techniques for food ingredient encapsulation, John Wiley & Sons.
  22. Başyiğit, B., Sağlam, H., Kandemir, Ş., Karaaslan, A. & Karaaslan, M. (2020), Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity, Powder Technology, 364, 654–663.
  23. Gonzalez-Palomares, S., Estarrón-Espinosa, M., Gómez-Leyva, J. F. & Andrade-González, I. (2009), Effect of the temperature on the spray drying of roselle extracts (Hibiscus sabdariffa L.), Plant foods for human nutrition, 64(1), 62–67.
  24. Östbring, K., Sjöholm, I., Rayner, M. & Erlanson-Albertsson, C. (2020), Effects of storage conditions on degradation of chlorophyll and emulsifying capacity of thylakoid powders produced by different drying methods, Foods, 9(5), 669.
  25. Ferrari, C. C., Germer, S. P. M. & de Aguirre, J. M. (2012), Effects of spray-drying conditions on the physicochemical properties of blackberry powder, Drying Technology, 30(2), 154–163.
  26. Bakowska-Barczak, A. M. & Kolodziejczyk, P. P. (2011), Black currant polyphenols: Their storage stability and microencapsulation. Industrial crops and products, 34(2), 1301–1309.