Antifungal ability of Streptomyces murinus NARZ against Colletotrichum gloeosporioides causing anthracnose on postharvest mango

Keywords

anthracnose
antifungal
Colletotrichum gloeosporioides
mango
Streptomyces Colletotrichum gloeosporioides
kháng nấm
Streptomyces
xoài
thán thư

Abstract

Anthracnose, caused by Colletotrichum spp., is among the most prevalent postharvest diseases affecting mango fruit. In this study, the strain Streptomyces murinus NARZ was used to assess its antifungal efficacy against Colletotrichum gloeosporioides D3, which was isolated from mango fruit infected by anthracnose, by measuring the fungal colony diameter in vitro. The results demonstrated that cell free culture of S. murinus NARZ, at ratio ranging from 20% to 50%, exhibited a superior antifungal effect against C. gloeosporioides D3 in PDA medium, achieving a 74.46% inhibitory effect at the ratio of 50%, surpassing the performance of Nystatin (10 µg/mL) or Erythromycin (30 µg/mL). The antifungal ability of cell free culture of S. murinus NARZ against C. gloeosporioides D3 is maintained when treated at temperatures from 30 °C to 121 °C and pH from 3 to 9. Cell free culture of S. murinus NARZ treated at 30 °C and pH = 5 has the best antifungal effect against C. gloeosporioides D3.

https://doi.org/10.26459/hueunijard.v133i3B.7442

References

  1. Ren, Y., Xue, Y., Tian, D., Zhang, L., Xiao, G. & He, J. (2020), Improvement of postharvest anthracnose resistance in mango fruit by nitric oxide and the possible mechanisms involved, Journal of Agricultural and Food Chemistry, 68(52), 15460–15467.
  2. Vũ Triệu Mân (2007), Giáo trình bệnh cây chuyên khoa, Đại học Nông nghiệp I Hà Nội.
  3. Chen, Y., Zhou, D., Qi, D., Gao, Z., Xie, J & Luo, Y. (2018), Growth promotion and disease suppression ability of a Streptomyces sp. CB-75 from banana rhizosphere soil, Frontiers in Microbiology, 8. doi.org/10.3389/fmicb.2017.02704.
  4. Panneerselvam, P., Selvakumar, G., Ganeshamurthy, A. N., Mitra, D., & Senapati, A. (2021), Enhancing pomegranate (Punica granatum L.) plant health through the intervention of a Streptomyces consortium, Bi°Control Science and Technology, 31(4), 430–442.
  5. Martinez, Z.E., Erika, A.C., Luis, F.C. & Elida, G.M. (2020), Bi°Control potential of Streptomyces sp. CACIS-1.5CA against phytopathogenic fungi causing postharvest fruit. Egyptian Journal of Biological Pest Control, 30, 117. doi.org/10.1186/s41938-020-00319-9.
  6. Zou, N., Zhou, D., Chen, Y., Lin, P., Chen, Y., Wang, W. & Wang, M. (2021), A novel antifungal actinomycete Streptomyces sp. strain H3-2 effectively controls banana Fusarium Wilt, Frontiers in Microbiology, 2226 (1), 1–10.
  7. Nguyễn Thị Thủy Tiên, Nguyễn Hiền Trang, Nguyễn Thỵ Đan Huyền, Lê Thanh Long (2022), Đánh giá khả năng kháng nấm Colletotrichum gây bệnh thán thư trên quả thanh long bởi các chủng Streptomyces sp., Tạp chí Khoa học Nông nghiệp Việt Nam, 20(12), 1591–1598.
  8. Burgess, L. W., Knight, T. E., Tesoriero. L. & Phan. H. T. (2008), Diagnostic manual for plant diseases in Vietnam. Australian Centre for International Agricultural Research, ACIAR, 7(3), 1–10.
  9. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990), Basic l°Cal alignment search tool, Journal of Molecular Biology, 215, 403–410.
  10. Tendulkar, S., Patkar, A. & Chattoo, B. (2003), A simple prot°Col for isolation of fungal DNA, Biotechnology Letters, 25, 1941–1944.
  11. Al-Hetar M. Y., Abidin M. A. Z., Sariah M. & Wong M. Y. (2011), Antifungal activity of chitosan against Fusarium oxysporum f. sp. Cubense, Journal of Applied Polymer Science, 120, 2434–2439.
  12. Snowdon, A. L. (1990), A color atlas of post-harvest diseases and disorders of fruits and vegetables, Wolfe Publishing, Volume 1.
  13. Gu, L., Zhang, K., Zhang, N., Li, X., & Liu, Z. (2020), Control of the rubber anthracnose fungus Colletotrichum gloeosporioides using culture filtrate extract from Streptomyces deccanensis QY-3. Antonie van Leeuwenhoek, 113(11), 1573–1585.
  14. Boukaew, S., Petlamul, W., & Prasertsan, P. (2020), Comparison of the bi°Control efficacy of culture filtrate from Streptomyces philanthi RL-1-178 and acetic acid against Penicillium digitatum, in vitro and in vivo, European Journal of Plant Pathology, 158(4), 939–949.
  15. Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. (2008), Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi, International Journal of Biological Sciences, 4(5), 330–337.
  16. El-abyad, M. S., El-sayed, M. A., El-Shanshoury, A. R. & El-sabbagh, S. M. (1993), Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp., Plant and Soil, 149, 185–195.
  17. Wonglom, P., Suwannarach, N., Lumyong, S., Ito, S.I., Matsui, K., & Sunpapao, A. (2019), Streptomyces angustmyceticus NR8-2 as a potential microorganism for the biological control of leaf spots of Brassica rapa subsp. pekinensis caused by Colletotrichum sp. and Curvularia lunata, Biological Control, 138, 104046.
  18. Kim, H. J., Lee, E. J., Park, S. H., Lee, H. S., & Chung, N. (2014), Biological control of anthracnose (Colletotrichum gloeosporioides) in pepper and cherry tomato by Streptomyces sp. A1022, Journal of Agricultural Science, 6(2), 54–62.
  19. Akond, M. A., Jahan, M. N., Sultana, N., & Rahman, F. (2016), Effect of temperature, pH and NaCl on the isolates of actinomycetes from straw and compost samples from Savar, Dhaka, Bangladesh, American Journal of Microbiology and Immunology, 1(2), 10–15.
  20. Islam, M. R., Jeong, Y. T., Ryu, Y. J., Song, C. H., & Lee, Y. S. (2009), Isolation, identification and optimal culture conditions of Streptomyces albidoflavus c247 producing antifungal agents against Rhiz°Ctonia solani AG2-2, Mycobiology, 37(2), 114–120.