A Evaluation of Trichoderma asperellum HL6 against Aspergillus niger Van Tieghem causing collar rot in groundnut

Keywords

cây lạc
héo rũ gốc mốc đen
Trichoderma asperellum
Aspegillus niger
kiểm soát sinh học groundnut
collar rot
Trichoderma asperellum
Aspegillus niger
biological control

Abstract

Collar rot disease, caused by the fungus Aspergillus niger Van Tieghem, significantly impacts peanut production. The long-term survival of fungal pathogens in soil can decrease the effectiveness of chemical fungicides. The use of antagonistic microorganisms can help control the fungal pathogen A. niger. A fungus strain HL6 which has been isoolated from the soil around the root zone of peanut plants grown in Hai Lang district, Quang Tri province, exhibited the inhibitory against A. niger of 77.41% efficiency under in vitro conditions. Molecular identification revealed that the strain HL6 belonged to the Trichoderma asperellum species based on nucleotide sequence comparison of the ITS1-4 region. The test results showed that the T. asperellum HL6 did not affect the germination rate of the peanut seeds. In net-house experiments, the addition of T. asperellum HL6 significantly reduced the occurrence of collar rot disease in peanut plants, with a disease prevention effectiveness reaching 99.55%. These results propose the field trials to evaluate the effectiveness of the T. asperellum HL6 in preventing collar rot diseases for production of bio-inoculants against A. niger.

https://doi.org/10.26459/hueunijard.v133i3C.7496

References

  1. Bajaya, T., Ghasolia, R. P., Bajya, M., Choudhary, M., Shivran, M., Kumari, P., Sharma J. (2022), Isolation, identification, pathogenicity and host range of Aspergillus niger causing collar rot of groundnut (Arachis hypogaea), The Pharma Innovation Journal, 11(2), 1441–1445.
  2. Arya, S. S., Salve, A. R., Chauhan, S. (2016), Peanuts as functional food: a review, J Food Sci Technol, 53(1), 31–41. https://doi.org/10.1007/s13197-015-2007-9.
  3. Lora, S., and Begum, T. (2019), Managing of Collar Rot Disease in Groundnut (Arachis hypogaea L.) by few Chemicals, Int. J. Sci. Res. in Biological Sciences, 6(3), 2347–7520. https://doi.org/10.26438/ijsrbs/v6i3.133136
  4. Kumar, C. V., Saifulla, M., Reddy, M. G., Naveenkumar, R., Prabhukarthikeyan, S. R. (2020), Occurrence, Pathogenicity and Assessment of Groundnut Genotypes Resistance to Aspergillus niger Inciting Collar Rot Disease, Int.J.Curr.Microbiol.App.Sci, 9(11), 874–886. https://doi.org/10.20546/ijcmas.2020.911.105.
  5. Mohammed, A., and Chala, A. (2014), Incidence of Aspergillus contamination of groundnut (Arachis hypogaea L.) in Eastern Ethiopia, African Journal of Microbiology Research, 8(8), 759–765. https://doi.org/10.5897/ajmr12.2078.
  6. Gajera, H. P., and Vakharia, D. N. (2012), Production of lytic enzymes by Trichoderma isolates during in vitro antagonism with Aspergillus niger, the causal agent of collar rot of peanut, Brazilian Journal of Microbiology, 43, 43–52.
  7. Hieu, N. X., Nga, N. T. M., Huy, N. D., Co, N. Q., Thuyet, C. T., Hoai, P. T. T., Thuy, N. T. T. (2023), Identification and characterization of Aspergillus niger causing collar rot of groundnut (Arachis hypogaea), Biodiversitas, 24(5), 2556–2562. https://doi.org/10.13057/biodiv/d240507.
  8. Zhihui, B., Bo, J., Yuejie, L., Jian, C., Zuming L. (2008), Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation, Journal of Environmental Sciences, 20(3), 353–358. https://doi.org/10.1016/S1001-0742(08)60055-8.
  9. Loc, N. H., Huy, N. D., Quang, H. T., Lan, T. T., Ha, T. T. T. (2020), Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34, Mycology, 11(1), 38–48. https://doi.org/10.1080/21501203.2019.1703839.
  10. Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S., Ramakrishnan, M., Landi, M., Araniti, F., Sharma, A. (2020), Trichoderma: The ‘secrets’ of a multitalented biocontrol agent, Plants, 9(6), 762–785. https://doi.org/10.3390/plants9060762.
  11. Trần Thị Thu Hà và Phạm Thanh Hòa (2012), Khả năng đối kháng của nấm Trichoderma với nấm bệnh hại cây trồng Sclerotium rolfsii Sacc trong điều kiện in vitro, Tạp chí Khoa học, Đại học Huế, 75A(6), 49–55.
  12. Nguyễn Đình Thi, Lê Đình Hường, Trần Thị Thu Hà, và Đỗ Vũ Quốc (2014), Nghiên cứu ảnh hưởng của chế phẩm Trichoderma và Pseudomonas trên các nền phân bón đến lạc hè thu tại Thừa Thiên Huế, Tạp chí Khoa học Đại học Huế, 98, 177–187.
  13. Gajera, H., Rakholiya, K., Vakharia, D. (2011), Bioefficacy of Trichoderma isolates against Aspergillus niger Van Tieghem inciting collar rot in groundnut (Arachis hypogaea L.), Journal Of Plant Protection Research, 51(3), 240–247. https://doi.org/10.2478/v10045-011-0040-x.
  14. Askew, D. J., and Laing, M. D. (1993), An adapted selective medium for the quantitative isolation of Trichoderma species, Plant Pathology, 42(5), 686–690.
  15. Watanabe, N. (1988), Antagonism by various kinds of Trichoderma fungi to soil-born plant pathogen, Bulletin of the Faculty of Agriculture Meiji University, 66, 45–50.
  16. Bissett, J. (1984), A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov, Canadian Journal of Botany, 62(5), 924–931. https://doi.org/10.1139/b84-131.
  17. Manter, D. K., Vivanco, J. M. (2007), Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis, Journal of Microbiological Methods, 71(1), 7–14. https://doi.org/10.1016/j.mimet.2007.06.016.
  18. Hall, T., Biosciences, I., Carlsbad, C. (2011), BioEdit: an important software for molecular biology, GERF Bulletin of Biosciences, 2(1), 60–61.
  19. Thompson, J. D., Higgins, D. G., Gibson, T. J. (1994), CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice, Nucleic Acids, 22(22), 4673–4680.
  20. Trifinopoulos, J., Lam, N., T., Haeseler, A., V., Minh, B., Q. (2016), W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis, Nucleic Acids Research, 44, 232–235. https://doi.org/10.1093/nar/gkw256.
  21. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Haeseler, A., V., Jermiin, L. S. (2017), ModelFinder: fast model selection for accurate phylogenetic estimates, Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285.
  22. Letunic, I., and Bork, P. (2021), Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation, Nucleic Acids Research, 49, 293–296, https://doi.org/10.1093/nar/gkab301.
  23. Tao, V. X., Tho, N. T., Linh, M. T. D., Tri, B. T., Diep, L. H., Ha, B. T. V., Huy, N. Q., Binh, N. X., Tuan, T. V. (2018), A highly efficient Agrobacterium tumefaciens mediated transformation system for the postharvest pathogen Penicillium digitatum using DsRed and GFP to visualize citrus host colonization, Journal of Microbiological Methods, 144, 134–144. https://doi.org/10.1016/j.mimet.2017.11.019.
  24. Rao, S. K. T., and Sitaramaiah, K. (2000), Management of collar rot disease (Aspergillus niger) in groundnut with Trichoderma spp., Journal of Mycology and Plant Pathology, 30(2), 221–224.
  25. Gautam AK, Bhadauria R. (2012), Characterization of Aspergillus species associated with commercially stored triphala powder, Afr J Biotechnol, 11(104), 16814–16823.
  26. Kasfi K., Taheri P, Jafarpour B, Tarighi S. (2018), Characterization of antagonistic microorganisms against Aspergillus spp. from grapevine leaf and berry surfaces, J Plant Pathol, 100, 179–190.
  27. Guchi, E. (2015), Effect of storage time on occurrence of Aspergillus species in groundnut (Arachis hypogaea L.) in eastern Ethiopia, J Appl Environ Microbiol [Internet], 3(1), 1–5. DOI:10.12691/jaem-3-1-1.
  28. Njoroge, S. M. C., Kanenga, K., Siambi, M., Waliyar, F., & Monyo, E. S. (2016), Identification and toxigenicity of Aspergillus spp. from soils planted to peanuts in Eastern Zambia, Peanut Science, 43(2), 148–156.
  29. Dania, VO, Fajemisin, AO, Azuh, VO. (2021), Morphological and molecular characterization of Aspergillus niger causing postharvest rot of white yam (Dioscorea rotundata Poir), Arch Phytopathol Plant Prot, 54(1), 1–19.
  30. Jørgensen, T. R., Nielsen, K. F., Arentshorst, M., Park, J., van den Hondel, C. A., Frisvad, J. C., & Ram, A. F. (2011), Submerged Conidiation and Product Formation by Aspergillus niger at Low Specific Growth Rates Are Affected in Aerial Developmental Mutants, Applied and Environmental Microbiology, 77(15), 5270–5277. doi:10.1128/aem.00118-11.
  31. Kredics, L., Büchner, R., Balázs, D., Allaga, H., Kedves, O., Racić, G., Varga, A., Nagy, V. D., Vágvölgyi, C., Sipos, G. (2024), Recent advances in the use of Trichoderma containing multicomponent microbial inoculants for pathogen control and plant growth promotion, World Journal of Microbiology and Biotechnology, 40, 162–176. https://doi.org/10.1007/s11274-024-03965-5.
  32. Bagwan, N. B. (2011), Evaluation of biocontrol potential of Trichoderma species against Sclerotium rolfsii, Aspergillus niger and Aspergillus flavus, International Journal of Plant Protection, 4(1), 107–111.
  33. Alwadai, A. S., Perveen, K., Alwahaibi, M. (2022), The isolation and characterization of antagonist Trichoderma spp. from the soil of Abha, Saudi Arabia, Molecules, 27(8), 2525–2539.
  34. Raja, M., Sharma, R. K., Jambhulkar, P. P., Pandian, R. T. P., Sharma, P. (2023), Comparative evaluation of native Trichoderma species from groundnut rhizosphere against stem rot caused by Sclerotium rolfsii Sacc., Indian Phytopathology, 76(2), 459–471. https://doi.org/10.1007/s42360-023-00610-3.
  35. Ayyandurai, M., Akila, R., Manonmani, K., Theradimani, M., Vellaikumar, S. (2021), Phytostimulation and growth promotion activities of Trichoderma spp. on groundnut (Arachis hypogaea L.) crop, Journal of Applied and Natural Science, 13(4), 1172–1179.