The effect of using Rhizobium bacteria in combination with nitrogen fertilizer rates on soybean yield in coastal sandy soil at Quang Dien district, Hue City
PDF (Vietnamese)

Keywords

soybean
coastal sandy soil
nitrogen fertilizer
Rhizobium
Hue City đậu tương
đất cát biển
phân đạm
Rhizobium
thành phố Huế

Abstract

Soybean (Glycine max (L.) Merr.) is a short-term industrial crop with high economic values. The study was conducted in Quang Dien district, Hue city in 2024 to evaluate the combined use effectiveness of Rhizobium bacteria and nitrogen rates on yield, biological nitrogen fixation capacity of soybean and soil properties. The experiment was arranged in a split-plot design including main plots (with and without Rhizobium bacteria inoculation) and sub plots with 4 nitrogen rates (0, 20, 40 and 60 kg N/ha). The results showed that nitrogen fertilization rates combined with Rhizobium bacteria in had a positive impact on yield and biological nitrogen fixation capacity of soybean and soil properties. Applicationof 40 kg N/ha combined with Rhizobium bacteria inoculation obtained the highest soybean yield (3.22 tons/ha), while application of 20 kg N/ha combined with Rhizobium bacteria inoculation had the best biological nitrogen fixation efficiency (Ndfa ratio reached 56.97%). Rhizobium bacteria inoculation also contributed to improve pH and some properties of coastal sandy soil. Rhizobium bacteria inoculation can be combined with nitrogen rates from 20 to 40 kg N/ha to both increase yield, ensure biological nitrogen fixation and improve the properties of coastal sandy soil.

https://doi.org/10.26459/hueunijard.v134i3B.7831
PDF (Vietnamese)

References

  1. Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., & Dobermann, A. (2008), Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review, Field Crops Research, 108(1), 1–13.
  2. Singh, R. K., Gupta, S. K., Kumar, A., & Sharma, S. (2021), Role of legumes in sustainable agriculture and soil health improvement, Legume Research, 44(2), 151–159.
  3. Hoang, T. T. H., Phan, T. C., Hoang, M. T., Chen, W., & Bell, R. W. (2010), Sandy soils in South Central Coastal Vietnam: Their origin, constraints, and management, Paper presented at the 19th World Congress of Soil Science, Brisbane, Australia.
  4. Hungria, M., Mendes, I. C., & Chueire, L. M. (2013), Biological nitrogen fixation in sustainable agriculture, Plant and Soil, 370(1-2), 12–23.
  5. Nguyễn Thị Vân (2020), Khả năng cải thiện độ phì đất của cây họ đậu trên đất cát ven biển Thừa Thiên Huế, Kỷ yếu Hội nghị Khoa học kỹ thuật Trường Đại học Nông Lâm Huế, 125–132.
  6. Udvardi, M., & Poole, P. S. (2013), Transport and metabolism in legume–rhizobia symbioses, Annual Review of Plant Biology, 64, 781–805.
  7. Zahran, H. H. (1999), Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climates, Microbiology and Molecular Biology Reviews, 63(4), 968–989. https://doi.org/10.1128/MMBR.63.4.968-989.1999.
  8. Hungria, M., & Vargas, M. A. T. (2000), Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil, Field Crops Research, 65(2-3), 151–164.
  9. Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008), Global inputs of biological nitrogen fixation in agricultural systems, Plant and Soil, 311(1–2), 1–18. https://doi.org/10.1007/s11104-008-9668-3.
  10. Thilakarathna, M. S., Doran, J. W., & Seneviratne, G. (2017), Excess nitrogen fertilization suppresses biological nitrogen fixation by soybeans: A meta-analysis, Soil Biology & Biochemistry, 115, 221–232.
  11. Mogale, E. T., Ayisi, K. K., Munjonji, L., & Kifle, Y. G. (2023), Biological Nitrogen Fixation of Cowpea in a No-Till Intercrop under Contrasting Rainfed Agro-Ecological Environments, Sustainability, 15(3), 2244.
  12. Nguyễn Văn Bộ, Trần Thị Hà. (2022), Ảnh hưởng của Rhizobium và phân đạm đến khả năng hình thành nốt sần ở đậu tương trên đất bạc màu, Tạp chí Nông nghiệp & PTNT, 3, 45–51.
  13. Trần Thị Mai, Lê Văn Hùng. (2023), Tương tác giữa phân đạm và vi khuẩn nốt sần Rhizobium ảnh hưởng đến sinh trưởng đậu cô ve, Tạp chí Khoa học đất, 1, 22–30.
  14. Panjaitan, D. S., Tanjung, H., Daulay, Z. R., & Ardiansyah, A. (2023), Effect of indigenous Rhizobium on soybean plant growth in ultisols, Indian Journal of Agricultural Research, 57(1), 95–100.
  15. Liu, B., Wang, L., Wu, X., & Zhang, Y. (2023), Long-term PK fertilizer combined with Bradyrhizobium inoculation improves soybean yield and soil properties in the black soil region of northeast China, Frontiers in Microbiology, 14, 1161983. https://doi.org/10.3389/fmicb.2023.1161983.
  16. Kuswantoro, H., Suryani, E., Supriyadi, S., & Hartati, D. (2020), The role of Rhizobium inoculation in improving soybean productivity and soil fertility, Agrivita, 42(3), 345–354.
  17. Vessey, J. K. (2003), Plant growth promoting rhizobacteria as biofertilizers, Plant and Soil, 255(2), 571–586. https://doi.org/10.1023/A:1026037216893.
  18. Taylor, S. R., & Komatsu, S. (2024), The diversity of Rhizobium communities and their role in nitrogen fixation in soybean, Proceedings of the Royal Society B: Biological Sciences, 291, 20240765.