Tóm tắt
Anoectochilus roxburghii (Wall.) Lindl, a valuable medicinal plant, is under threat due to overexploitation and adverse growing conditions. Therefore, genetic research is necessary to preserve and create hybrid varieties for breeding. In this study, we used RAPD markers to assess genetic differences among 17 A. roxburghii accessions collected in Hue City. The results showed that 17 RAPD selected primers were suitable for evaluating genetic polymorphism due to the high percentage of polymorphic bands (76.105%) and the na, ne, h, and I indices gave high values, reaching 1.762, 1.428, 0.249 and 0.373, respectively. Among these 17 primers, UBC#405, UBC#427, UBC#446, UBC#469, UBC#476 and UBC#498 were the six most optimal primers for RAPD marker development with the highest PIC, Rp, MI, and EMR indices. Additionally, the UPGMA tree was separated into three clusters, which showed the genetic grouping among accessions in the population of A. roxburghii. The similarity coefficients ranged from 0.635 to 0.930. HUIB_AR10 was most similar to HUIB_AR06 while it was most different from HUIB_AR01.
Tài liệu tham khảo
- Ho V. T., Vo T. T. D., & Pham L. P. (2020), Initial application of RAPD molecular markers to evaluate the genetic diversity of jewel orchid (Anoectochilus spp.) accessions, Journal of Science Technology and Food, 20(3), 3–10.
- Zhang W., Chen K., Mei Y., & Wang J. (2024a), De Novo Transcriptome Assembly of Anoectochilus roxburghii for Morphological Diversity Assessment and Potential Marker Development, Plants, 13(23), 3262. https://doi.org/10.3390/plants13233262.
- Cheng C-F., Lu C-W., Wu W-J., Su L-Y., Nguyen T. K. N., Shen S-C., Lien C-Y, Chuang W-C, Lee M-C, & Wu C-H. (2023), Therapeutic Effects of Plant Extracts of Anoectochilus roxburghii on Side Effects of Chemotherapy in BALB/c Breast Cancer Mice, Plants, 12(13), 2494. https://doi.org/10.3390/plants12132494.
- Fu L., Zhu W., Tian D., Tang Y., Ye Y., Wei Q., Zhang C, Qiu W, Qin D, Yang X, & Huang Y. (2022), Dietary Supplement of Anoectochilus roxburghii (Wall.) Lindl. Polysaccharides Ameliorates Cognitive Dysfunction Induced by High Fat Diet via “Gut-Brain” Axis, Drug Design, Development and Therapy, 16, 1931–1945. https://doi.org/10.2147/DDDT.S356934.
- Yuan J., Wu X., Karrar E., Zhang L., Huang Z., Wu D., & Li J. (2024), Characterization of Anoectochilus roxburghii Bioactive Compounds and Its Inhibition on the Metabolism-Related Enzyme Activities In Vitro, Journal of Food Biochemistry, 2024(1), 5521656. https://doi.org/10.1155/2024/5521656.
- Trinh N. B., Trieu T. H., Phung D. T., Tran C. N., Dang T. H. H., Nguyen T. H. A., Hoang T. S., Tran H. L., Pham Q. T., Ninh V. K., Tran H. Q., Vu V. N., & Tran V. D. (2020), Medicinal Plant, Anoectochilus: Distribution, Ecology, Commercial Value and Use inNorth Vietnam, Journal of Pharmaceutical Research International, 32(11), 84–92. https://doi.org/10.9734/JPRI/2020/v32i1130551.
- Li S., Wang Z., Shao Q., Fang H., Zhu J., Wu X., & Zheng B. (2018), Rapid detection of adulteration in Anoectochilus roxburghii by near-infrared spectroscopy coupled with chemometric methods, Journal of Food Science and Technology, 55(1), 3518–3525. http://doi.org/10.1007/s13197-018-3276-x.
- Zheng Y., Li L., Liu X., Xu S., Sun X., Zhang Z., Guo H., & Shao Q. (2024), The improvement of kinsenoside in wild-imitated cultivation Anoectochilus roxburghii associated with endophytic community, Industrial Crops and Products, 208, 117896. https://doi.org/10.1016/j.indcrop.2023.117896.
- Wang H., Chen X., Yan X., Xu Z., Shao Q., Wu X., & Wang H. (2022), Induction, Proliferation, Regeneration and Kinsenoside and Flavonoid Content of the Anoectochilus roxburghii (Wall.) Lindl Protocorm-like Body, Plants, 11(19), 2465. https://doi.org/10.3390/plants11192465.
- Decree 84/2021 Analysis /ND-CP (2021), On management of endangered, precious and rare forest plants and animals and implementation of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, Hanoi. https://vanban.chinhphu.vn/default.aspx?pageid=27160&docid=204157.
- Niklas A., & Olszewska D. (2021), Application of the RAPD technique to identify genetic diversity in cultivated forms of Capsicum annuum L, BioTechnologia, 102(2), 209–223. http://doi.org/10.5114/bta.2021.106523.
- Verma K. S., Haq S., Kachhwaha S., & Kothari S. L. (2017), RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: a unique source of germplasm highly adapted to drought and high-temperature stress, 3 Biotech, 7(5), 288. https://doi.org/10.1007/s13205-017-0918-z.
- Babu K. N., Sheeja T. E., Minoo D., Rajesh M. K., Samsudeen K., Suraby E. J., & Kumar I. P. V. (2021), Random Amplified Polymorphic DNA (RAPD) and Derived Techniques, Methods in Molecular Biology, 2222, 219–247. https://doi.org/10.1007/978-1-0716-0997-2_13.
- Bisultanova Z. I., Dzhambetova P. M., & Dzhambetova L. M. (2023), The Use of RAPD Markers in the Study of Polymorphism of Mountain Populations of Dandelion Officinalis, BIO Web of Conferences, 63, 07003. https://doi.org/10.1051/bioconf/20236307003.
- Tran T. K. P., Pham M. H., Trinh T. H., Widiarsih S., & Ho V. T. (2022), Investigation of the genetic diversity of jewel orchid in Vietnam using RAPD and ISSR markers, Biodiversitas, 23(9), 4816–4825. https://doi.org/10.13057/biodiv/d230950.
- Nguyen T. T., Nguyen T. H. H., Phung V. P., Vu Q. N., Do Q. T., & Ho H. N. (2014), Analysis genetic diversity of Anoectochilus calcareus Aver. in Quan Ba district, Ha Giang Province, Journal of Forestry Science and Technology, 2, 20–24.
- Ho V. T., Tran T. K. P., Vu T. T. T., & Widiarsih S. (2021), Comparison of matK and rbcL DNA barcodes for genetic classification of jewel orchid accessions in Vietnam, Journal of Genetic Engineering and Biotechnology, 19(1). https://doi.org/10.1186/s43141-021-00188-1.
- Rasphone S., Ho N. T. H., Dang L. T., Nguyen B. L. Q., & Truong H. T. H. (2022), Genetic diversity analysis of black pepper (Piper spp.) with RAPD markers, Hue University Journal of Science: Natural Science, 131(1D), 49–59. https://doi.org/10.26459/hueunijns.v131i1D.6715.
- Serrote C. M. L., Silveira R. L. R., Buuron S. K., Santos R. S. M., & Stefanel C. (2020), Determining the Polymorphism Information Content of a Molecular Marker, Gene, 726(1), 144175. https://doi.org/10.1016/j.gene.2019.144175.
- Truong H. T. H., Ho N. T. H., Rasphone S., & Ho H. N. (2024), Evaluation of genetic diversity of some snake gourd varieties (Trichosanthes cucumerina L.), Conference: National Biotechnology Conference, 110–115.
- David D., Rusdi N. A., Mokhtar R. A. M., Faik A. A. M., & Azlan G. J. (2022), Establishment of In Vitro Regeneration Protocol for Sabah’s Jewel Orchid, Macodes limii J.J. Wood & A.L. Lamb, Horticulturae, 8(2), 155. https://doi.org/10.3390/horticulturae8020155.
- Diallo S., Badiance F. A., Kabkia B. A., Diédhiou I., Made D., & Diouf D. (2024), Genetic diversity and population structure of cowpea mutant collection using SSR and ISSR molecular markers, Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-83087-y.
- Saengprajak J., Phetsom J., Sangdee A., Atichart P., Chuncher S., Theerakulpisut P., Saengprajak A., & Thanonkaew S. (2024), Assessment of Genetic Relationship among Rhynchostylis Species based on Inter-Simple Sequence Repeat (ISSR) Markers, Plant Breeding Biotechology, 12, 69–81. https://doi.org/10.9787/PBB.2024.12.69.
- Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S. V., & Rafalski A. (1996), The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis, Molecular Breeding, 2, 225–238. https://doi.org/10.1007/BF00564200.
- Prevost A., & Wilkinson M. J. (1999), A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars, Theoretical and Applied Genetics, 98, 107–112. https://doi.org/10.1007/s001220051046.
- Srisamoot N., & Padsri I. (2018), Assessing genetic diversity of some Anthurium andraeanum Hort. cut-flower cultivars using ISSR markers, Genomics and Genetics, 11(1&2), 1–8. https://doi.org/10.14456/gag.2018.1.
- Khemkladngoen N., Kopimai Y., Suranapornchai S., & Jirapinyo R. (2024), Assessment of Genetic Diversity and Relationships of Anoectochilus burmannicus and Related Species in Thailand Using ISSR Marker, Thai Journal of Science and Technology, 12(2), 78–91. https://doi.org/10.14456/tjst.2024.8.
- Delfini J., Moda-Cirino V., Neto J. S., Ruas P. M., Sant’Ana C., Gept P., & Gonçalves L. S. A. (2021), Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm, Scientific Reports, 11, 2964. https://doi.org/10.1038/s41598-021-82437-4.
- Zhang X., Chen W., Yang Z., Luo C., Zhang W., Xu F., Ye J., & Liao Y. (2024b), Genetic diversity analysis and DNA fingerprint construction of Zanthoxylum species based on SSR and iPBS markers, BMC Plant Biology, 24(843). https://doi.org/10.1186/s12870-024-05373-1.
- Tremblay R. L., Ackerman J. D., Zimmerman J. K., & Calvo R. N. (2005), Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification, Biological Journal of the Linnean Society, 84, 1–54. https://doi.org/10.1111/j.1095-8312.2004.00400.x.
- Wang T., Su Y., & Li Y. (2012), Population Genetic Variation in the Tree Fern Alsophila spinulosa (Cyatheaceae): Effects of Reproductive Strategy, PLOS ONE, 7(7), e41780. https://doi.org/10.1371/journal.pone.0041780.