Reaction mechanism of 1-(4-methoxyphenyl)-2-selenourea and HOO• from quantum chemical calculation perspectives
PDF (Vietnamese)

How to Cite

Hương Đinh Q, Dương T, Nam PC. Reaction mechanism of 1-(4-methoxyphenyl)-2-selenourea and HOO• from quantum chemical calculation perspectives. hueuni-jns [Internet]. 2020Jun.30 [cited 2024Jun.22];129(1C):5-14. Available from:


The density functional theory (DFT) has been used to study the antioxidant capacity of 1-(4-methoxyphenyl)-2-selenourea (CH3OPSeU) in reaction with HOO. Three reaction mechanisms (hydrogen atom transfer (HAT), single electron transfer (SET), and radical adduct formation (RAF)), and reaction rate constants were investigated and calculated. The results show that the HAT mechanism is generally more predominant than the SET and HAT ones. The quantity of products under this mechanism accounts for 99,9% of the total products. N12–H13 is the most favored hydrogen transfer position with the highest rate constant at 4,1×106 M–1·s–1.
PDF (Vietnamese)


  1. Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009;55(1):1-23. DOI:
  2. Polovka M, Brezova V, Stasko A. Antioxidant properties of tea investigated by EPR spectroscopy. Biophys Chem. 2003;106(1):39-56. DOI:
  3. Wright JS, Johnson ER, DiLabio GA. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. Journal of the American Chemical Society. 2001;123(6):1173-83. DOI:
  4. Klein E, Lukeš V, Cibulková Z, Polovková J. Study of N–H, O–H, and S–H bond dissociation enthalpies and ionization potentials of substituted anilines, phenols, and thiophenols. J Mol Struct. 2006; 758(2):149-59. DOI:
  5. Mayer JM, Hrovat DA, Thomas JL, Borden WT. Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene, Methoxyl/ Methanol, and Phenoxyl/Phenol Self-Exchange Reactions. Journal of the American Chemical Society. 2002;124(37):11142-7. DOI:
  6. Urbaniak A, Szeląg M, Molski M. Theoretical investigation of stereochemistry and solvent influence on antioxidant activity of ferulic acid. Computational and Theoretical Chemistry. 2013;1012:33-40. DOI:
  7. Musialik M, Litwinienko G. Scavenging of dpph• Radicals by Vitamin E Is Accelerated by Its Partial Ionization: The Role of Sequential Proton Loss Electron Transfer. Org Lett. 2005;7(22):4951-4. DOI:
  8. Huong DQ, Duong T, Nam PC. An experimental and computational study of antioxidant activity of N-phenylthiourea and N-phenylselenourea analogues. Vietnam J Chem. 2019;57(4):469-79. DOI:
  9. Ingold KU, Pratt DA. Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chem Rev. 2014;114(18):9022-46. DOI:
  10. Galano A, Alvarez-Idaboy JR. A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity. J Comput Chem. 2013;34(28):2430-45. DOI:
  11. Thong NM, Quang DT, Bui TNH, Dao DQ, Nam PC. Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): A theoretical study. Chem Phys Lett. 2015;625:30-5. DOI:
  12. Tabrizi L, Dao DQ, Vu TA. Experimental and theoretical evaluation on the antioxidant activity of a copper(ii) complex based on lidocaine and ibuprofen amide-phenanthroline agents. RSC Advances. 2019;9(6):3320-35. DOI:
  13. Shang Y, Zhou H, Li X, Zhou J, Chen K. Theoretical studies on the antioxidant activity of viniferifuran. New J Chem. 2019;43(39):15736-42. DOI:
  14. Thong NM, Vo VQ, Huyen TL, Bay MV, Tuan D, Nam PC. Theoretical Study for Exploring the Diglycoside Substituent Effect on the Antioxidative Capability of Isorhamnetin Extracted from Anoectochilus roxburghii. ACS omega. 2019; 4(12):14996-5003. DOI:
  15. Klein E, Lukeš V, Ilčin M. DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chemical Physics. 2007;336(1):51-7. DOI:
  16. Rimarčík J, Lukeš V, Klein E, Ilčin M. Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J Mol Struct. 2010;952(1):25-30. DOI:
  17. Dzib E, Cabellos JL, Ortíz-Chi F, Pan S, Galano A, Merino G. Eyringpy: A program for computing rate constants in the gas phase and in solution. Int J Quantum Chem. 2018;119(2):1-10. DOI:
  18. Marcus RA. Chemical and Electrochemical Electron-Transfer Theory. Annu Rev Phys Chem. 1964;15(1):155-96. DOI:
  19. Marcus RA. Electron transfer reactions in chemistry. Theory and experiment. Reviews of Modern Physics. 1993;65(3):599-610. DOI:
  20. Nelsen SF, Weaver MN, Luo Y, Pladziewicz JR, Ausman LK, Jentzsch TL, et al. Estimation of electronic coupling for intermolecular electron transfer from cross-reaction data. The journal of physical chemistry A. 2006;110(41):11665-76. DOI:
  21. Wigner E. On the Quantum Correction For Thermodynamic Equilibrium. Phys Rev. 1932;40:749-59. DOI:
  22. Eckart C. The Penetration of a Potential Barrier by Electrons. Phys Rev. 1930;35(11):1303-9. DOI:
  23. Biegler–König F. Aim2000. J Comput Chem. 2001;22(5):545-59. DOI:
  24. Vo VQ, Nam PC, Bay MV, Thong NM, Nguyen DC, Mechler A. Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans. Sci Rep. 2018;8(1):1-10. DOI:
  25. Ngo TC, Dao DQ, Thong NM, Nam PC. A DFT analysis on the radical scavenging activity of oxygenated terpenoids present in the extract of the buds of Cleistocalyx operculatus. The Royal Society of Chemistry. 2017;7(63):39686-98. DOI:
  26. Vo VQ, Ho TP, Thao PTT, Nam PC. Substituent effects on antioxidant activity of monosubstituted indole-3-carbinols: A DFT study. Vietnam J Chem. 2019;57(6):728-34. DOI:
  27. Holroyd LF, Van Mourik T. Insufficient description of dispersion in B3LYP and large basis set superposition errors in MP2 calculations can hide peptide conformers. Chem Phys Lett. 2007;442(1-3):42-6. DOI:
  28. Zhao Y, Schultz NE, Truhlar DG. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J Chem Theory Comput. 2006;2(2):364-82. DOI:
  29. Alberto ME, Russo N, Grand A, Galano A. A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Phys Chem Chem Phys. 2013;15(13):4642-50. DOI:
  30. Vélez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J, et al. A computational study of stereospecifity in the thermal elimination reaction of menthyl benzoate in the gas phase. J Phys Org. 2009;22(10):971-7. DOI:
  31. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, et al. Gaussian 09, rev. A. 02. 2009.
  32. Serobatse KRN, Kabanda MM. An appraisal of the hydrogen atom transfer mechanism for the reaction between thiourea derivatives and •OH radical: A case-study of dimethylthiourea and diethylthiourea. Computational and Theoretical Chemistry. 2017;1101:83-95. DOI:
  33. Vo VQ, Gon TV, Bay MV, Mechler A. Antioxidant Activities of Monosubstituted Indolinonic Hydroxylamines: A Thermodynamic and Kinetic Study. J Phys Chem B. 2019;123(50):10672-9. DOI:
  34. Filarowski A, Majerz I. AIM analysis of intramolecular hydrogen bonding in O-hydroxy aryl Schiff bases. The journal of physical chemistry A. 2008;112(14):3119-26. DOI:
  35. Rozas I, Alkorta I, Elguero J. Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors. Journal of the American Chemical Society. 2000;122(45):11154-61. DOI:
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 Array