Fabrication CdS/Au/TiO2 sandwich nanofibers for enhanced photoelectrochemical water-splitting efficiency
PDF

Keywords

electrospinning
water splitting
TiO2 nanofibers
sandwich-structured
PEC

How to Cite

1.
Nguyen VN, Nguyen MS, Doan MT. Fabrication CdS/Au/TiO2 sandwich nanofibers for enhanced photoelectrochemical water-splitting efficiency. hueuni-jns [Internet]. 2020Jun.22 [cited 2025Jan.21];129(1B):15-23. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/5763

Abstract

The sandwich-structured CdS/Au/TiO2 nanofibers (NFs) act as a photoanode in the photoelectrochemical cell (PEC) for hydrogen generation by splitting water. The gold nanoparticles sandwiched between the TiO2 nanofibers and the CdS quantum dots (QDs) layers play an important role in enhancing the solar-to-chemical-energy conversion efficiency. The structure and morphology of the materials were characterized by using field-emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The surface plasmon resonance (SPR) of the Au nanoparticles was investigated by using ultraviolet-visible (UV–Vis) diffuse reflectance spectroscopy. The PEC properties of the photoanode were measured on a three-electrode electrochemical analyzer. The obtained photoconversion efficiency of the CdS/Au/TiO2 NFs is 4.1% under simulated-sunlight illumination with a 150 W xenon lamp. Working photoelectrode stability was tested, and the mechanism of the enhanced PEC performance was discussed.

https://doi.org/10.26459/hueuni-jns.v129i1B.5763
PDF

References

  1. Khan SUM. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science. 2002; 297(5590):2243-2245. DOI: 10.1126/science.1075035
  2. Hoang S, Guo S, Hahn NT, Bard AJ, Mullins CB. Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires. Nano Letters. 2011;12(1):26-32. DOI: 10.1021/nl2028188
  3. Sui R, Rizkalla AS, Charpentier PA. Formation of Titania Nanofibers: A Direct Sol−Gel Route in Supercritical CO2. Langmuir. 2005;21(14):6150-6153. DOI: 10.1021/la0505972
  4. Caratão B, Carneiro E, Sá P, Almeida B, Carvalho S. Properties of Electrospun TiO2 Nanofibers. Journal of Nanotechnology. 2014;2014:1-5. DOI: http://dx.doi.org/10.1155/2014/472132
  5. Chang C, Lee H, Chen C, Wu Y, Hsu Y, Chang Y, et al. A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells. Journal of Biomedical Materials Research Part A. 2012;100A(7):1687-1695. DOI: 10.1002/jbm.a.34117
  6. Wang H, Liu Y, Zhong M, Xu H, Huang H, Shen H. In situ controlled synthesis of various TiO2 nanostructured materials via a facile hydrothermal route. Journal of Nanoparticle Research. 2010;13(5):1855-1863. DOI: https://doi.org/10.1007/s11051-010-9933-2
  7. Biernat K, Malinowski A, Malwwina G. The Possibility of Future Biofuels Production Using Waste Carbon Dioxide and Solar Energy. In: Zhen F, editors. Biofuels – Economy, Environment and Sustainability. London (UK): IntechOpen Limited; 2013. p. 123-172.
  8. Dholam R, Patel N, Adami M, Miotello A. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. International Journal of Hydrogen Energy. 2009;34(13): 5337-5346. DOI: 10.1016/j.ijhydene.2009.05.011
  9. Luo J, Ma L, He T, Ng CF, Wang S, Sun H, Fan HJ. TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties. The Journal of Physical Chemistry C. 2012;116(22):11956-11963. DOI: dx.doi.org/10.1021/jp3031754
  10. Li J, Cushing SK, Zheng P, Senty T, Meng F, Bristow AD, Manivannan A, Wu N. Solar Hydrogen Generation by a CdS-Au-TiO2 Sandwich Nanorod Array Enhanced with Au Nanoparticle as Electron Relay and Plasmonic Photosensitizer. Journal of the American Chemical Society. 2014;136(23):8438-8449. DOI: 10.1021/ja503508g
  11. Wang H, You T, Shi W, Li J, Guo L. Au/TiO2/Au as a Plasmonic Coupling Photocatalyst. The Journal of Physical Chemistry C. 2012;116(10):6490-6494. DOI: 10.1021/jp212303q
  12. Fang J, Xu L, Zhang Z, Yuan Y, Cao S, Wang Z, et al. Au@TiO2–CdS Ternary Nanostructures for Efficient Visible-Light-Driven Hydrogen Generation. ACS Applied Materials & Interfaces. 2013;5(16):8088-8092. DOI: 10.1021/am4021654
  13. Xu F, Mei J, Zheng M, Bai D, Wu D, Gao Z, et al. Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds. 2017;693:1124-1132. DOI: 10.1016/j.jallcom.2016.09.273
  14. Song K, Wang X, Xiang Q, Xu J. Weakened negative effect of Au/TiO2 photocatalytic activity by CdS quantum dots deposited under UV-vis light illumination at different intensity ratios. Physical Chemistry Chemical Physics. 2016;18(42):29131-29138. DOI: 10.1039/c6cp05739j
  15. Su F, Wang T, Lv R, Zhang J, Zhang P, Lu J, et al. Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale. 2013;5(19):9001. DOI: 10.1039/c3nr02766j
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 Array