Progress in the microscopic description of nucleon-nucleus elastic scattering at low-energy
PDF

Keywords

microscopic optical potential
effective Skyrme interaction
self-consistent mean-field

How to Cite

1.
Hao TVN, Tam DQ. Progress in the microscopic description of nucleon-nucleus elastic scattering at low-energy. hueuni-jns [Internet]. 2021Oct.5 [cited 2025Jan.2];130(1B):75-9. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6217

Abstract

In this brief report, we make a short review of progress in developing the microscopic optical potential in recent years. In particular, we present our current studies and plans on building the microscopic optical potential based on the so-called nuclear structure models at low energies.

https://doi.org/10.26459/hueunijns.v130i1B.6217
PDF

References

  1. Idini A, Barbieri C, Navrátil P. Ab initio optical potentials and nucleon scattering on medium mass nuclei. Physical Review Letters. 2019;123(9). DOI: https://doi.org/10.1103/physrevlett.123.092501
  2. Rotureau J, Danielewicz P, Hagen G, Jansen GR, Nunes FM. Microscopic optical potentials for calcium isotopes. Physical Review C. 2018;98(4). DOI: https://doi.org/10.1103/physrevc.98.044625
  3. Whitehead TR, Lim Y, Holt JW. Proton elastic scattering on calcium isotopes from chiral nuclear optical potentials. Physical Review C. 2019;100(1). DOI: https://doi.org/10.1103/physrevc.100.014601
  4. Holt JW, Kaiser N, Miller GA. Microscopic optical potential for exotic isotopes from chiral effective field theory. Physical Review C. 2016;93(6). DOI: https://doi.org/10.1103/physrevc.93.064603
  5. Jeukenne J, Lejeune A, Mahaux C. Optical-model potential in finite nuclei from Reid's hard core interaction. Physical Review C. 1977;16(1):80-96. DOI: https://doi.org/10.1103/physrevc.16.80
  6. Barbieri C, Jennings BK. Nucleon-nucleus optical potential in the particle-hole approach. Physical Review C. 2005;72(1). DOI: https://doi.org/10.1103/physrevc.72.014613
  7. Arellano HF, von Geramb HV. Extension of the full-folding optical model for nucleon-nucleus scattering with applications up to 1.5 GeV. Physical Review C. 2002;66(2). DOI: https://doi.org/10.1103/physrevc.66.024602
  8. Dupuis M, Karataglidis S, Bauge E, Delaroche JP, Gogny D. Correlations in microscopic optical model for nucleon elastic scattering off doubly closed-shell nuclei. Physical Review C. 2006;73(1). DOI: https://doi.org/10.1103/physrevc.73.014605
  9. Mau N, Bouyssy A. Optical potential for low-energy neutrons: Imaginary potential for neutron-40Ca elastic scattering. Nuclear Physics A. 1976;257(2):189-220. DOI: https://doi.org/10.1016/0375-9474(76)90627-8
  10. Mau N, Bouyssy A. Optical potential for low-energy neutrons: Imaginary potential for neutron-40Ca elastic scattering. Nuclear Physics A. 1976;257(2):189-220. DOI: https://doi.org/10.1016/0375-9474(76)90627-8
  11. Nobre GPA, Dietrich FS, Escher JE, Thompson IJ, Dupuis M, Terasaki J, et al. Coupled-channel calculation of nonelastic cross sections using a density-functional structure model. Physical Review Letters. 2010;105(20). DOI: https://doi.org/10.1103/physrevlett.105.202502
  12. Nobre GPA, Dietrich FS, Escher JE, Thompson IJ, Dupuis M, Terasaki J, et al. Toward a microscopic reaction description based on energy-density-functional structure models. Physical Review C. 2011;84(6). DOI: https://doi.org/10.1103/physrevc.84.064609
  13. Mizuyama K, Ogata K. Self-consistent microscopic description of neutron scattering by16O based on the continuum particle-vibration coupling method. Physical Review C. 2012;86(4). DOI: https://doi.org/10.1103/physrevc.86.041603
  14. Mizuyama K, Ogata K. Low-lying excited states of 24O investigated by a self-consistent microscopic description of proton inelastic scattering. Physical Review C. 2014;89(3). DOI: https://doi.org/10.1103/physrevc.89.034620
  15. Blanchon G, Dupuis M, Arellano HF, Vinh Mau N. Microscopic positive-energy potential based on the Gogny interaction. Physical Review C. 2015;91(1). DOI: https://doi.org/10.1103/physrevc.91.014612
  16. Blanchon G, Dupuis M, Arellano HF. Prospective study on microscopic potential with Gogny interaction. The European Physical Journal A. 2015;51(12). https://doi.org/10.1140/epja/i2015-15165-1
  17. Blanchon G, Dupuis M, Bernard RN, Arellano HF. Asymmetry dependence of Gogny-based optical potential. The European Physical Journal A. 2017;53(5). DOI: https://doi.org/10.1140/epja/i2017-12268-7
  18. Hao TVN, Loc BM, Phuc NH. Low-energy nucleon-nucleus scattering within the energy density functional approach. Physical Review C. 2015;92(1). DOI: https://doi.org/10.1103/physrevc.92.014605
  19. Hao TVN, Loc BM, Phuc NH. Low-energy nucleon-nucleus scattering within the energy density functional approach. Physical Review C. 2015;92(1). DOI: https://doi.org/10.1103/physrevc.92.014605
  20. Hoang Tung N, Quang Tam D, Pham VNT, Lam Truong C, Hao TVN. Effects of velocity-dependent and spin-orbit terms of the Skyrme interaction on neutron elastic scattering observables. Physical Review C. 2020;102(3). DOI: https://doi.org/10.1103/physrevc.102.034608
  21. Experimental data taken from the National Nuclear Data Center, Brookhaven National Laboratory Online Data Service. http://www.nndc.bnl.gov/ensdf/.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array