Graphene-carbon nanotubes-gold nanoparticles composites: Synthesis and characterization
PDF (Vietnamese)

Keywords

màng tổ hợp DWCNTs-AuNPs-Gr
CVD
cảm biến điện hóa DWCNTs-AuNPs-Gr
cyclic voltammetry
electrochemical biosensor

How to Cite

1.
Phan VC, Phan N Đức D, Cao TT, Nguyễn KN, Lê TQX, Phạm VT, Đào NT, Bùi TPT, Phạm Đức T, Nguyễn VC. Graphene-carbon nanotubes-gold nanoparticles composites: Synthesis and characterization. hueuni-jns [Internet]. 2022Mar.31 [cited 2022Aug.14];131(1A):57-64. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6292

Abstract

In this work, a composite nanomaterial consisting of graphene (Gr), double-wall carbon nanotube (DWCNTs) and gold nanoparticles (AuNPs), designated as DWCNTs-AuNPs-Gr was synthesized via the thermal chemical vapour deposition technique. The morphology and electrical and electrochemical properties of the material were characteried by using field emission scanning electron microscopy, Raman spectroscopy, four-probe sheet resistance measurement, and cyclic voltammetry (CV). The average sheet resistance value of DWCNTs-AuNPs-Gr is 549 W/sq, 2.3 times lower than that of graphene. The current response of a DWCNTs-AuNPs-Gr-modified electrode in a 2 mM K3[Fe(CN)6]/K4[Fe(CN)6] solution with 0.1 M PBS is 15.79 µA, 1.48 times higher than that of a graphene-modified electrode and 2.57 times higher than that of a bare electrode. The DWCNTs-AuNPs-Gr material can be used for electrochemical biosensors to detect various bioelements.

https://doi.org/10.26459/hueunijns.v131i1A.6292
PDF (Vietnamese)

References

  1. Thanh CT, Binh NH, Van Tu N, Thu VT, Bayle M, Paillet M, et al. An interdigitated ISFET-type sensor based on LPCVD grown graphene for ultrasensitive detection of carbaryl. Sensors Actuators B Chem. 2018;260:78-85.
  2. Pan H, Li J, Feng YP. Carbon Nanotubes for Supercapacitor. Nanoscale Res Lett. 2010;5(3):654-68.
  3. Barone V, Hod O, Scuseria GE. Electronic Structure and Stability of Semiconducting Graphene Nanoribbons. Nano Lett. 2006;6(12):2748-54.
  4. Van Hau T, Van Trinh P, Van Tu N, Duoc PND, Phuong MT, Toan NX, et al. Electrodeposited nickel–graphene nanocomposite coating: influence of graphene nanoplatelet size on wear and corrosion resistance. Appl Nanosci. 2021;1-10.
  5. Novoselov KS. Electric Field Effect in Atomically Thin Carbon Films. Science (80-). 2004;306(5696): 666-9.
  6. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996;381(6584):678-80.
  7. Thanh CT, Binh NH, Duoc PND, Thu VT, Trinh P Van, Anh NN, et al. Electrochemical sensor based on reduced graphene oxide/double-walled carbon nanotubes/octahedral Fe3O4/chitosan composite for glyphosate detection. Bull Environ Contam Toxicol. 2021;1-7.
  8. Gan X, Lv R, Bai J, Zhang Z, Wei J, Huang Z-H, et al. Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors. 2D Mater. 2015;2(3):034003.
  9. Van Chuc N, Thanh CT, Van Tu N, Phuong VTQ, Thang PV, Thanh Tam NT. A Simple Approach to the Fabrication of Graphene-Carbon Nanotube Hybrid Films on Copper Substrate by Chemical Vapor Deposition. J Mater Sci Technol. 2015;31(5):479-83.
  10. Green AA, Hersam MC. Properties and Application of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type. ACS Nano. 2011;5(2): 1459-67.
  11. Dang VT, Nguyen DD, Cao TT, Le PH, Tran DL, Phan NM, et al. Recent trends in preparation and application of carbon nanotube-graphene hybrid thin films. Adv Nat Sci Nanosci Nanotechnol. 2016;7(3):1-10.
  12. Wang C, Nie X-G, Shi Y, Zhou Y, Xu J-J, Xia X-H, et al. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles. ACS Nano. 2017;11(6):5897-905.
  13. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater. 2010;22(16):1805-25.
  14. Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P. Gold nanoparticle-based colorimetric biosensors. Nanoscale. 2017;10(1):18-33.
  15. Bettazzi F, Ingrosso C, Sfragano PS, Pifferi V, Falciola L, Curri ML, et al. Gold nanoparticles modified graphene platforms for highly sensitive electrochemical detection of vitamin C in infant food and formulae. Food Chem. 2021;344:128692.
  16. Zalewska A, Krzyminiewski R, Dobosz B, Mrozińska J, Kruczyński Z. The effect of copper ions on interaction of UV radiation with methacrylic matrix - EPR study. Mater Chem Phys. 2013;143 (1):440-5.
  17. Duoc PND, Binh NH, Hau T Van, Thanh CT, Trinh P Van, Tuyen NV, et al. A novel electrochemical sensor based on double-walled carbon nanotubes and graphene hybrid thin film for arsenic(V) detection. J Hazard Mater. 2020;400(June 2019): 123185.
  18. Xuan LTQ, Quan TH, Ha TT, Thuan DN. Removal of Rhodamine B Dye By Plasma Jet Oxidation Process. Commun Phys. 2020;31(1):95-102.
  19. Calizo I, Bejenari I, Rahman M, Liu G, Balandin AA. Ultraviolet Raman microscopy of single and multilayer graphene. J Appl Phys. 2009;106(4): 043509.
  20. Mondal P, Salam N, Mondal A, Ghosh K, Tuhina K, Islam SM. A highly active recyclable gold-graphene nanocomposite material for oxidative esterification and Suzuki cross-coupling reactions in green pathway. J Colloid Interface Sci. 2015;459:97-106.
  21. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv Mater. 2010;22(35):3906-24.
  22. Dou N, Qu J. Rapid synthesis of a hybrid of rGO/AuNPs/MWCNTs for sensitive sensing of 4-aminophenol and acetaminophen simultaneously. Anal Bioanal Chem. 2021;413(3):813-20.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array