Fabrication of TiO2 nanofibre photoelectrode for photoelectrochemical cells


TiO2 nanofibres

How to Cite

Nghia NV, Truong NKN, Hoang HN. Fabrication of TiO2 nanofibre photoelectrode for photoelectrochemical cells. hueuni-jns [Internet]. 2022Jun.30 [cited 2024Jul.12];131(1B):59-65. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6412


The TiO2 nanofibres (NFs), prepared with the electrospinning method, acted as the photoanode in a photoelectrochemical cell (PEC) for hydrogen generation. The fabrication parameters of Ti/PVP (polyvinylpyrrolidone) fibres were determined with the field-emission scanning electron microscopy (FE-SEM) method. The structure and morphology of the TiO2 fibres were characterized by using X-ray diffraction (XRD), FE-SEM, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). The average diameter of the TiO2 fibre is 132 ± 16 nm. A three-electrode potentiostat was used to study the photoelectrochemical properties of the photoanode. The density photocurrent reached the saturation value of 80 mA·cm–2 at 0.2 V under the irradiation of a Xenon lamp.



  1. Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972;238(5358):37-8.
  2. Khan SUM, Al-Shahry M, Ingler WB. Efficient photochemical water splitting by a chemically modified n-TiO2.Science. 2002;297(5590):2243-5.
  3. Hu L, Chen G. Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications. Nano Letters. 2007;7(11):3249-52.
  4. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano Letters. 2005;5(1):191-5.
  5. Kang Q, Cao J, Zhang Y, Liu L, Xu H, Ye J. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A. 2013;1(18):5766-74.
  6. Feng X, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA. Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications. Nano Letters. 2008;8(11):3781-6.
  7. Qin D-D, Bi Y-P, Feng X-J, Wang W, Barber GD, Wang T, et al. Hydrothermal Growth and Photoelectrochemistry of Highly Oriented, Crystalline Anatase TiO2 Nanorods on Transparent Conducting Electrodes. Chemistry of Materials. 2015;27(12):4180-3.
  8. Mali MG, An S, Liou M, Al-Deyab SS, Yoon SS. Photoelectrochemical solar water splitting using electrospun TiO2 nanofibers. Applied Surface Science. 2015;328:109-14.
  9. Li Y, Gao F, Zhao L, Ye Y, Liu J, Tao Y. Reversing CdS and ZnS preparation order on electrospun TiO2 and its effects on photoelectrochemical property. 2016;11(11):731-3.
  10. Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S. Structural and Optical Properties of Electrospun TiO2 Nanofibers. Chemistry of Materials. 2007;19(26):6536-42.
  11. Albetran H, Dong Y, Low IM. Characterization and optimization of electrospun TiO2/PVP nanofibers using Taguchi design of experiment method. Journal of Asian Ceramic Societies. 2015;3(3):292-300.
  12. Kim J-H, Lee J-H, Kim J-Y, Kim SS. Synthesis of Aligned TiO2 Nanofibers Using Electrospinning. 2018;8(2):309.
  13. Li L, Dai H, Feng L, Luo D, Wang S, Sun X. Enhance photoelectrochemical hydrogen- generation activity and stability of TiO2 nanorod arrays sensitized by PbS and CdS quantum dots under UV-visible light. Nanoscale Research Letters. 2015;10(1):418.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Array