Growth and morphological responses of Halophila beccarii to low salinity
PDF

Keywords

Halophila beccarii
brackish lagoon
salinity
seagrass

How to Cite

1.
Dang Thi Le Xuan X, Phan TTH, Hoang CT, Ton TP, Luong QD. Growth and morphological responses of Halophila beccarii to low salinity. hueuni-jns [Internet]. 2022Jun.30 [cited 2024Dec.2];131(1B):47-5. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6452

Abstract

Halophila beccarii Ascherson is classified as a threatened seagrass species by IUCN because of the reductive tendency of ​​its distribution area. This seagrass is considered a euryhaline species adapted to a wide range of salinities from freshwater and brackish water to marine water. Previous studies showed that the species tends to grow better under low salinity; however, its optimum salinity has not been determined. In Vietnam, H. beccarii grows in habitats with low salinity (0–20 ppt). The results show that salinity affects the growth, survival rate, shoot density, biomass, and morphological characteristics of the grass. The leaf dimension is more prolonged and broader; the petiole and shoot length are longer at 10 ppt salinity. In contrast, both the number of shoots and biomass peak at 5 ppt and decrease at lower and higher salinities. The study reveals that H. beccarii can grow better under mesohaline conditions than freshwater and hypersaline conditions with an optimum salinity at 5–10 ppt. These findings would explain the species’ distribution dynamics in coastal environments and be helpful information for conserving the seagrass populations in habitats with fluctuating salinity as coastal lagoons in Central Vietnam.

https://doi.org/10.26459/hueunijns.v131i1B.6452
PDF

References

  1. Short F, Carruthers T, Dennison W, Waycott M. Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology. 2007;350(1-2):3-20.
  2. Den Hartog C. The seagrasses of the world. Amsterdams: North Holland Publishing Co; 1970.
  3. Hemminga MA, Duarte CM. Seagrass ecology: Cambridge: Cambridge University Press; 2000.
  4. Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, et al. Extinction risk assessment of the world’s seagrass species. Biological Conservation. 2011;144(7):1961-1971.
  5. Orth RJ, Carruthers TJ, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, et al. A global crisis for seagrass ecosystems. Bioscience. 2006;56(12):987-996.
  6. Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the national academy of sciences. 2009;106(30):12377-12381.
  7. Cullen-Unsworth LC, Unsworth RKF. Strategies to enhance the resilience of the world’s seagrass meadows. J Appl Ecol. 2016;53(4):967-972.
  8. Wortmanna J, Hearnea JW, Adamsb JB. A mathematical model of an estuarine seagrass. Ecological Modelling. 1997;98(2-3):137-149.
  9. Kamermans P, Hemminga MA, de Jong DJ. Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, The Netherlands). Marine Biology. 1999;133(3):527-539.
  10. Van Katwijk M, Schmitz G, Gasseling A, Van Avesaath P. Effects of salinity and nutrient load and their interaction on Zostera marina. Marine Ecology Progress Series. 1999;190:155-165.
  11. Biebl R, McRoy C. Plasmatic resistance and rate of respiration and photosynthesis of Zostera marina at different salinities and temperatures. Marine Biology. 1971;8(1):48-56.
  12. Fernández-Torquemada Y, Sánchez-Lizaso JL. Effects of salinity on leaf growth and survival of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Journal of Experimental Marine Biology and Ecology. 2005;320(1):57-63.
  13. Fernández-Torquemada Y, Sánchez-Lizaso JL. Responses of two Mediterranean seagrasses to experimental changes in salinity. Hydrobiologia. 2011;669(1):21-33.
  14. Torquemada YF, Durako MJ, Lizaso JLS. Effects of salinity and possible interactions with temperature and pH on growth and photosynthesis of Halophila johnsonii Eiseman. Marine Biology. 2005; 148(2):251-260.
  15. Adams J, Bate G. The ecological implications of tolerance to salinity by Ruppia cirrhosa (Petagna) Grande and Zostera capensis Setchell. Botanica Marina. 1994;37(5):449-456.
  16. Sandoval-Gil JM, Marín-Guirao L, Ruiz JM. The effect of salinity increase on the photosynthesis, growth and survival of the Mediterranean seagrass Cymodocea nodosa. Estuarine, Coastal and Shelf Science. 2012;115: 260-271.
  17. Sibly R, Calow P. A life-cycle theory of responses to stress. Biological Journal of the Linnean Society. 1989;37(1-2):101-116.
  18. Kamermans P, Hemminga MA, Jong d. Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, The Netherlands). Marine Biology. 1999;133(3):527-539.
  19. Ogata E, Matsui T. Photosynthesis in several marine plants of Japan as affected by salinity, drying and pH, with attention to their growth habitats. Botanica Marina. 1965;8(2-4):199-217.
  20. Hang PTT, Stiers I, Huong NTT, Tuyet PT, Phap TT, Doc LQ, et al. Spatial and temporal distribution of submerged aquatic vegetation in a tropical coastal lagoon habitat in Vietnam. Botanica Marina. 2018;61(3):213-224.
  21. Dai NH, Hoa NX, Tri PH, Linh NT. Seagrass beds along the southern coast of Vietnam and their significance for associated flora and fauna. Collection of Marine Research Works. 2000;10:149-160.
  22. Den Hartog C. The seagrasses of the world. Amsterdams: North-Holland; 1970.
  23. Kanal AHM, Short F. A new record of seagrass Halophila beccarii Ascherson in Bangladesh. CMU. Journal of Natural Science. 2009;8(2):201-206.
  24. Short F, Coles R, Waycott M, Bujang J, Fortes M, Prathep A, et al. Halophila beccarii. The IUCN Red List of Threatened Species; 2010: e.T173342A 6995080.
  25. Vy NX, Bujang JS, Papenbrock J. Variability of leaf morphology and marker genes of members of the Halophila complex collected in Vietnam. Aquatic botany. 2013;110:6-15.
  26. Mishra AK, Apte D. The current status of Halophila beccarii: An ecologically significant, yet vulnerable seagrass of India. Ocean & Coastal Management. 2021;200:105484.
  27. Savurirajan M, Lakra RK, Ganesh T. A new record of the seagrass Halophila beccarii Ascherson from the Port Blair coast, Andaman and Nicobar Islands, India. Botanica Marina. 2015;58(5):409-413.
  28. Liao LM, Geraldino PJL. Has Halophila beccarii Ascherson (Alismatales, Hydrocharitaceae) Been Locally Extirpated in the Philippines. Tropical Natural History. 2020;20(1):104-110.
  29. Udagedara S, Fernando D, Perera N, Tanna A, Bown R. A first record of Halodule pinifolia Miki den Hartog, and new locality of nationally endangered Halophila beccarii Asch, from the eastern coast of Sri Lanka. International Journal of Aquatic Biology. 2017;5(5):328-335.
  30. Zakaria MH, Bujang JS, Arshad A. Flowering, fruiting and seedling of annual Halophila beccarii Aschers in Peninsular Malaysia. Bulletin of marine science. 2002;71(3):1199-1205.
  31. Aye AA, Hsan AM, Soe-Htun U. The Morphotaxonomy and Phytosociology of Halophila beccarii (Family: Hydrocharitaceae) in Kalegauk Island, Mon State. Mawlamyine University Research Journal. 2014;5:1-15.
  32. Hena MA, Short F, Sharifuzzaman S, Hasan M, Rezowan M, Ali M. Salt marsh and seagrass communities of Bakkhali Estuary, Cox’s Bazar, Bangladesh. Estuarine, Coastal and Shelf Science. 2007;75(1-2):72-78.
  33. Parthasarathy N, Ravikumar K, Ramamurthy K. Floral biology and ecology of Halophila beccarii Aschers. (Hydrocharitaceae). Aquatic botany. 1988; 31(1-2):141-151.
  34. Untawale A, Jagtap T. A new record of Halophila beccarii Aschers from Indian coast. Mahasagar. 1977;10(1-2):91-93.
  35. Fakhrulddin I, Sidik BJ, Harah ZM. Halophila beccarii Aschers. (Hydrocharitaceae) Responses to Different Salinity Gradient. Journal of Fisheries and Aquatic Science. 2013;8(3):462-471.
  36. Zakaria MH, Sidik BJ, Hishamuddin O. Flowering, fruiting and seedling of Halophila beccarii Aschers. (Hydrocharitaceae) from Malaysia. Aquatic Botany. 1999;65(1-4):199-207.
  37. Xuan DTL, Thao TTH, Lan HLT, Sang TTT, Phap TT, Hang PTT, et al. Morphological and distribution characteristics of Najas indica (Wild.) Cham. in the Cau Hai lagoon, Thua Thien Hue province. Hue University Journal of Science: Natural Science. 2020;129(1A):107-114.
  38. Charpentier A, Grillas P, Lescuyer F, Coulet E, Auby I. Spatio-temporal dynamics of a Zostera noltii dominated community over a period of fluctuating salinity in a shallow lagoon, Southern France. Estuarine, Coastal and Shelf Science. 2005; 64(2-3):307-315.
  39. Benjamina KJ, Walker DI, McComb AJ, Kuo J. Structural response of marine and estuarine plants of Halophila ovalis (R. Br.) Hook. f. to long-term hyposalinity. Aquatic Botany. 1999;64(1):1-17.
  40. Tien NV, Binh LT, Dai NH, Ha TH, Huong TTL, Nam D, et al. Approaches to management of seagrass ecosystem in Vietnam. Hanoi: Science and Technics Publishing; 2004.
  41. Anh TNQ, Doc LQ. Current status of submerged aquatic vegetation in the Con Chim aquacultural protective area, Tam Giang–Cau Hai lagoon system. Hue University Journal of Science: Natural Science. 2013;73(4):9-17.
  42. Thanh TD, Lan TD, Cu NH, Huy DV. Evolution and dynamic of the Tam Giang - Cau Hai lagoon system. Hanoi: Natural Science and Tachnology; 2010.
  43. Viet N, Hung TD, Lien HT, Hung NV, Vinh PD, Kanh HH, Thanh TD, Hoa PV, Oanh ND, Vinh, Le Quang. Thua Thien Hue's climate and hydrological characteristics. Hue: Thuan Hoa; 2004.
  44. Hang PTT. Submerged Aquatic Vegetation in a Tropical Coastal Lagoon Environment: Dynamics and Resilience Strategy. Brussels: University of Brussels; 2018.
  45. Oscar MA, Barak S, Winters G. The tropical invasive seagrass, Halophila stipulacea, has a superior ability to tolerate dynamic changes in salinity levels compared to its freshwater relative, Vallisneria americana. Frontiers in plant science. 2018;9:950.
  46. Short F, Duarte CM. Methods for the measurement of seagrass growth and production. In: Short FT, Coles RG, Editors. Global Seagrass Research Methods. Netherlands: Elsevier Science BV; 2001.
  47. Duarte CM, Kirkman H. Methods for the measurements of seagrass abundance and depth distribution. In: Coles FTSaRG, Editor. Global seagrass research methods. Netherlands: Elsevier Science BV; 2001.
  48. Westphalen G, O’Loughlin E, Collings G, Tanner J, Eglinton Y, Bryars S. Responses to reduced salinities of the meadow forming seagrasses Amphibolis and Posidonia from the Adelaide metropolitan coast. Adelaide: South Australian Research and Development Institute; 2005.
  49. Mefiez EG, Phillips RC, Calumpong HP. Seagrasses from Philippines. Washington: Smithsonian Institution Press; 1983.
  50. Soe-Htun U, San-Tha-Htun U, Mu-Mu-Aye D, Win DL-L, Ohno M. Notes on seagrasses along Myanmar coastal regions. Bulletin of Marine Sciences and Fisheries, Kochi University. 2001;21 (21):13-22.
  51. Cambridge M, Zavala-Perez A, Cawthray G, Mondon J, Kendrick G. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis. Marine Pollution Bulletin. 2017;115(1-2):252-260.
  52. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651-681.
  53. Pagès JF, Pérez M, Romero J. Sensitivity of the seagrass Cymodocea nodosa to hypersaline conditions: a microcosm approach. Journal of Experimental Marine Biology and Ecology. 2010; 386(1-2):34-38.
  54. Nejrup LB, Pedersen MF. Effects of salinity and water temperature on the ecological performance of Zostera marina. Aquatic Botany. 2008;88(3):239-246.
  55. Diego L, Wendell P, Cropper JR. The Influence of Salinity on Seagrass Growth, Survivorship, and Distribution within Biscayne Bay, Florida: Field, Experimental, and Modeling Studies. Estuaries and Coasts. 2003;26(1):131-141.
  56. Vy NX, Detcharoen M, Tuntiprapas P, Soe-Htun U, Sidik JB, Harah MZ. et al. Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean. BMC Evolutionary Biology. 2014;14(1):92.
  57. Luong VC, Thao NV, Komatsu T, Ve ND, Tien DD. Status and threats on seagrass beds using GIS in Vietnam. Remote Sensing of the Marine Environment II. 2012;8525:1-13.
  58. Hang PTT, Huong NTT, Luong QD, Phap TT. Composition of submerged aquatic vegetation in Cau Hai lagoon, Thua Thien Hue province. Hue University Journal of Science. 2016;5(1):87-94.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Array