Effect of shell thickness on heterostructure of CdSe/CdS core/shell nanocrystals
PDF

Keywords

Core/shell quantum dots, semiconductor nanocrystals, core-shell heterostructures, bandgap tunability, optical materials

How to Cite

1.
Le AT, Man MT, Nguyen MH. Effect of shell thickness on heterostructure of CdSe/CdS core/shell nanocrystals. hueuni-jns [Internet]. 2022Jun.30 [cited 2024Nov.28];131(1B):5-10. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6491

Abstract

Core/shell hetero-nanostructures are promising materials for fabricating optoelectronic devices, photodetectors, bioimaging, and biosensing. The CdSe/CdS core/shell nanocrystals (NCs) were synthesized in a wet chemical reaction. The shell thickness was modified by varying reaction times. The structure and optical properties as a function of the CdS shell thickness were investigated. A systematic redshift of the first exciton absorption peaks and photoluminescent (PL) spectra occurred after coating with CdS confirmed the shell growth over the CdSe core. The PL's intensity increased compared with that of bare NCs. The formation of high-quality NCs with uniform size distribution was shown in the transmission electron microscopy (TEM) image and confirmed by the narrow PL band and small FWHM.

https://doi.org/10.26459/hueunijns.v131i1B.6491
PDF

References

  1. Gaponik N, Hickey SG, Dorfs D, Rogach AL, Eychmüller A. Progress in the light emission of colloidal semiconductor nanocrystals. Small. 2010; 6:1364-78.
  2. Talapin DV, Lee JS, Kovalenko M V, Shevchenko E V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev. 2010; 110:389-458.
  3. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science. 1998;281(5385):2013-6.
  4. Litvin AP, Martynenko IV, Purcell-Milton F, Baranov AV, Fedorov AV, Gun’Ko YK. Colloidal quantum dots for optoelectronics. J Mater Chem A. 2017;5:13252-75.
  5. Melnikov AA, Fedichkin LE. Quantum walks of interacting fermions on a cycle graph. Sci Rep 2016;6. https://doi.org/10.1038/srep34226.
  6. Chaniotakis N, Buiculescu R. 11 - Semiconductor quantum dots in chemical sensors and biosensors. In: Honeychurch KC, editor. Nanosensors for Chemical and Biological Applications: Woodhead Publishing; 2014. p. 267-94.
  7. Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun’Ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B. 2017;5:6701-27.
  8. Mahler B, Nadal B, Bouet C, Patriarche G, Dubertret B. Core/shell colloidal semiconductor nanoplatelets. J Am Chem Soc. 2012;134:18591-8.
  9. Prudnikau A, Chuvilin A, Artemyev M. CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings. J Am Chem Soc. 2013;135:14476-9.
  10. Tessier MD, Spinicelli P, Dupont D, Patriarche G, Ithurria S, Dubertret B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014;14:207-13.
  11. Kelestemur Y, Guzelturk B, Erdem O, Olutas M, Gungor K, Demir HV. Platelet-in-Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@ Shell Heteronanoplatelets. Adv Funct Mater. 2016;26:3570-9.
  12. Saidzhonov BM, Kozlovsky VF, Zaytsev VB, Vasiliev RB. Ultrathin CdSe/CdS and CdSe/ZnS core-shell nanoplatelets: The impact of the shell material on the structure and optical properties. J Lumin. 2019;209:170-8.
  13. Biadala L, Siebers B, Gomes R, Hens Z, Yakovlev DR, Bayer M. Tuning energy splitting and recombination dynamics of dark and bright excitons in CdSe/CdS dot-in-rod colloidal nanostructures. J Phys Chem C. 2014;118:22309-16.
  14. Talapin DV, Nelson JH, Shevchenko EV, Aloni S, Sadtler B, Alivisatos AP. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 2007;7:2951-9.
  15. Cassette E, Mahler B, Guigner JM, Patriarche G, Dubertret B, Pons T. Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. ACS Nano. 2012;6:6741-50.
  16. Carbone L, Nobile C, De Giorgi M, Della Sala F, Morello G, Pompa P, et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 2007;7:2942-50.
  17. Rainò G, Stöferle T, Moreels I, Gomes R, Kamal JS, Hens Z, et al. Probing the wave function delocalization in CdSe/CdS dot-in-rod nanocrystals by time-and temperature-resolved spectroscopy. ACS Nano. 2011;5:4031-6.
  18. Eshet H, Grünwald M, Rabani E. The electronic structure of CdSe/CdS Core/shell seeded nanorods: Type-I or quasi-type-II? Nano Lett. 2013;13:5880-5.
  19. Nan W, Niu Y, Qin H, Cui F, Yang Y, Lai R, et al. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J Am Chem Soc. 2012;134:19685-93.
  20. Peng X, Schlamp MC, Kadavanich A V, Alivisatos AP. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc. 1997;119:7019-29.
  21. Christodoulou S, Vaccaro G, Pinchetti V, De Donato F, Grim JQ, Casu A, et al. Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route. J Mater Chem C. 2014;2:3439-47.
  22. Chen O, Zhao J, Chauhan VP, Cui J, Wong C, Harris DK, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater. 2013;12:445-51.
  23. Beane GA, Gong K, Kelley DF. Auger and Carrier Trapping Dynamics in Core/Shell Quantum Dots Having Sharp and Alloyed Interfaces. ACS Nano. 2016;10:3755-65.
  24. Liao C, Xu R, Xu Y, Zhang C, Xiao M, Zhang L, et al. Ultralow-Threshold Single-Mode Lasing from Phase-Pure CdSe/CdS Core/Shell Quantum Dots. J Phys Chem Lett. 2016;7:4968-76.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Array